Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3
Pt đã cho luôn luôn có 2 nghiệm pb với mọi m
\(\left\{{}\begin{matrix}x_1+x_2=23\\x_1x_2=-m^2-14\end{matrix}\right.\)
\(\Rightarrow P=23-m^2-14=9-m^2\le9\)
\(P_{max}=9\) khi \(m=0\)
\(P_{min}\) không tồn tại
b) \(\Delta=4-4\left(-m\right)=4+4m\). pt có nghiệm <=> \(\Delta\ge0\Leftrightarrow4+4m\ge0\Leftrightarrow m\ge-1\)
pt có nghiệm với mọi m>=-1 => áp dụng hệ thức vi ét ta có: \(x1+x2=-2\); \(x1.x2=-m\);
\(x1^4+x2^4=\left(x1+x2\right)^4-4x1^3x2-6x1^2x^2_2-4x1x2^3=16-2x1.x2\left(2x^2+3x1.x2+2x^2_2\right)\)
\(=16+2m\left[2\left(x1^2+2x1.x2+x2^2\right)-x1.x2\right]=16+2m\left[2\left(x1+x2\right)^2+m\right]=16+2m.4+2m^2=2m^2+8m+16\)
\(=2\left(m^2+4m+8\right)=2\left(m^2+4m+4+4\right)=2\left(m+2\right)^2+8\)
\(m\ge-1\Rightarrow m+2\ge1\Leftrightarrow2\left(m+2\right)^2+8\ge10\)=> Min P=10 <=> m=-1
Sao ở khúc 16 + 2m [2 (x1 + x2) ^ 2 + m] = 16 + 2*4 +2m vậy?
Lời giải:
$\Delta'=(m+1)^2-(4m-m^2)=2m^2-2m+1=2(m-0,5)^2+0,5>0$ với mọi $m$ nên pt luôn có 2 nghiệm pb với mọi $m$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=4m-m^2\end{matrix}\right.\)
Khi đó:
\(P=|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{(x_1+x_2)^2-4x_1x_2}\)
\(=\sqrt{4(m+1)^2-4(4m-m^2)}=\sqrt{4(2m^2-2m+1)}\)
\(=2\sqrt{2(m-0,5)^2+0,5}\geq 2\sqrt{0,5}\)
Vậy $P_{\min}=2\sqrt{0,5}=\sqrt{2}$. Giá trị này đạt tại $m=0,5$
Theo Vi-et : \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1.x_2=4m-m^2\end{matrix}\right.\)
\(\Rightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1.x_2\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=\left(2m+2\right)^2-4.\left(4m-m^2\right)=4m^2+8m+4-16m+4m^2\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=8m^2-8m+4=8\left(m^2+m+\dfrac{1}{4}\right)+2=8\left(m+\dfrac{1}{2}\right)^2+2\ge2\)
\(\Leftrightarrow\left|x_1-x_2\right|\ge\sqrt{2}\)
\(\Delta=4m^2-4m+1-4\left(2m-2\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\)
Do đó pt luôn có nghiệm
Theo định lí Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)
Lại có: \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(A=\left(2m-1\right)^2-2\left(2m-2\right)\)
\(A=4m^2-4m+1-4m+4\)
\(A=4m^2-8m+5\)
\(A=4\left(m-1\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\) m=1
Tick hộ nha 😘
pt có nghiệm \(< =>\Delta\ge0\)
\(< =>[-\left(2m-1\right)]^2-4\left(2m-2\right)\ge0\)
\(< =>4m^2-4m+1-8m+8\ge0\)
\(< =>4m^2-12m+9\ge0\)
\(< =>4\left(m^2-3m+\dfrac{9}{4}\right)\ge0\)
\(=>m^2-2.\dfrac{3}{2}m+\dfrac{9}{4}\ge0< =>\left(m-\dfrac{2}{3}\right)^2\ge0\)(luôn đúng)
=>pt luôn có 2 nghiệm
theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m-1\\x1x2=2m-2\end{matrix}\right.\)
\(A=\left(x1+x2\right)^2-2x1x2=\left(2m-1\right)^2-2\left(2m-2\right)\)
\(A=4m^2-4m+1-4m+4=4m^2+5\ge5\)
dấu"=" xảy ra<=>m=0