K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn B

23 tháng 6 2020

hep you 

14 tháng 4 2018

a, Đặt x2=t(t≥0)x2=t(t≥0)

x4−2mx2+2m−1=0x4−2mx2+2m−1=0

⟺t2−2mt+2m−1=0⟺t2−2mt+2m−1=0 (**)

Để phương trình có 4 nghiệm phân biệt thì Δ′>0⟺m2−2m+1>0⟺(m−1)2>0⟺m≠1Δ′>0⟺m2−2m+1>0⟺(m−1)2>0⟺m≠1 (1)

{t1t2=2m−1>0t1+t2=2m>0 (∗){t1t2=2m−1>0t1+t2=2m>0 (∗)

⟺m>12⟺m>12 (2)

Phương trình bậc 4 trùng phương thì có 4 nghiệm trong đó có 2 cặp nghiệm là số đối của nhau.

x1<x2<x3<x4→{x1=−x4x2=−x3x1<x2<x3<x4→{x1=−x4x2=−x3

x4−x3=x3−x2→x4=3x3x4−x3=x3−x2→x4=3x3

TT: x1=3x2x1=3x2

→x1.x4=9x2.x3→t1=9t2→x1.x4=9x2.x3→t1=9t2 ( với t1;t2t1;t2 là 2 nghiệm của pt(**))

Đến đây thay vào (*) bên trên ta được hệ:

⟺{9t22=2m−15t2=m⟺{9t22=2m−15t2=m

→9(2)2−25(1)⟺9m2−50m+25=0⟺(9m−5)(m−5)=0→9(2)2−25(1)⟺9m2−50m+25=0⟺(9m−5)(m−5)=0

⟺m=59⟺m=59 v m=5m=5 (cả 2 đều thỏa mãn)

∙∙ Với m=59⟺x=±1m=59⟺x=±1 v x=±13x=±13

∙∙ Với m=5⟺x=±1m=5⟺x=±1 v x=±3

2 tháng 7 2020

Nhân x+1 vs x+4

x+2 vs x+3

17 tháng 6 2016
a) ax^2 + bx + c = 0 Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. ∆ > 0 => b^2 - 4ac > 0 x1 + x2 = -b/a > 0 => b và a trái dấu x1.x2 = c/a > 0 => c và a cùng dấu Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 ∆ = b^2 - 4ac >0 x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 => phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. x1 + x2 ≥ 2√( x1.x2 ) x3 + x4 ≥ 2√( x3x4 ) => x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) Tiếp tục côsi cho 2 số không âm ta có √( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) Theo a ta có x1.x2 = c/a x3.x4 = a/c => ( x1.x2 )( x3.x4 ) = 1 => 2√[√( x1.x2 )( x3.x4 ) ] = 2 Từ (#) và (##) ta có x1 + x2 + x3 + x4 ≥ 4
7 tháng 5 2022

Ptr có: `\Delta=b^2-4ac=(-1)^2-4.1.(-1)=5 > 0`

 `=>` Ptr có `2` `n_o` pb

Áp dụng Vi-ét: `{(x_1+x_2=[-b]/a=1),(x_1.x_2=c/a=-1):}`

Ta có:

`P=(x_1-x_2)^2`

`P=x_1 ^2-2x_1.x_2+x_2 ^2`

`P=(x_1+x_2)^2-4x_1.x_2`

`P=1^2-4.(-1)=5`

7 tháng 5 2022

Cứu tinh đến nhanh quá.