K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

đặt \(\sqrt{x^2+x+1}=t\left(t\ge\sqrt{\dfrac{3}{4}}\right)tacó\)

pt \(\Leftrightarrow\)3t=t\(^2\)+2

\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=1\left(tm\right)\\t=2\left(tm\right)\end{matrix}\right.\)

Với t=1 ta có x\(^2\)+x+1=1 \(\Leftrightarrow\)x=0 hoặc x=-1

với t=2 ta có x\(^2\)+x+1 =2 \(\Leftrightarrow\)\(\dfrac{-1\mp\sqrt{5}}{2}\)=x

2 tháng 4 2017

câu 2 tương tự đặt 2x^2+x-2=t(t\(\ge\dfrac{-17}{8}\))

ta có pt \(\Leftrightarrow\)t^2+5t-6=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=1\left(tm\right)\\t=-6\left(loại\right)\end{matrix}\right.\)

với t=1 thì 2x^2+x-2=1 \(\Leftrightarrow\)t=1 hoặc -3/2

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

16 tháng 11 2017

b) Đặt \(u=\sqrt{1-x}\); \(v=\sqrt{1+x}\)

phương trình trở thành

\(2u-v+3uv=u^2+2\)\(\Rightarrow u^2-2u+v-3uv+2=0\)

lại có \(u^2+v^2=2\)

\(\Rightarrow u^2-2u-3uv+v+u^2+v^2=0\)

\(\Rightarrow\left(u-v-1\right)\left(2u-v\right)=0\)

đến đây thì easy rồi

16 tháng 11 2017

a)

Đặt \(\sqrt{2x+1}=t\) ;\(\sqrt{x}=k\)

Phương trình trở thành

\(\left(3k^2+t^2\right)t-\left(3t^2+k^2\right)k-1=0\)

\(\Leftrightarrow3k^2t+t^3-3t^2k-k^3-1=0\)

\(\Leftrightarrow\left(t-k\right)\left(t^2+kt+k^2\right)-3tk\left(t-k\right)-1=0\)

\(\Leftrightarrow\left(t-k\right)^3-1=0\)

\(\Leftrightarrow\left(t-k-1\right)\left(\left(t-k\right)^2+t-k+1\right)=0\)

do t > k => t - k > 0

\(\Rightarrow\left(t-k\right)^2+t-k+1>0\)

\(\Rightarrow t-k-1=0\)

\(\Leftrightarrow t=1+k\)\(\Leftrightarrow\sqrt{2x+1}=1+\sqrt{x}\)

\(\Leftrightarrow2x+1=x+2\sqrt{x}+1\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

END

15 tháng 8 2016

.

NV
31 tháng 3 2021

a.

\(\Leftrightarrow2x^2\ge3\Leftrightarrow x^2\ge\dfrac{3}{2}\Rightarrow\left[{}\begin{matrix}x\ge\sqrt{\dfrac{3}{2}}\\x\le-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\)

b.

\(\Leftrightarrow\left(1-x\right)\left(x-3\right)\ge0\Rightarrow1\le x\le3\)

c.

\(\Leftrightarrow\sqrt{1-3x}\le2-x\Leftrightarrow\left\{{}\begin{matrix}1-3x\ge0\\2-x\ge0\\1-3x\le x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\x\le2\\x^2-x+3\ge0\end{matrix}\right.\) \(\Leftrightarrow x\le\dfrac{1}{3}\)

25 tháng 12 2020

a, ĐK: \(x\ge\dfrac{1}{5}\)

\(pt\Leftrightarrow\sqrt{5x^2+x+3}+5x-1-2\sqrt{5x-1}+1+x^2+2x+1=-2\)

\(\Leftrightarrow\sqrt{5x^2+x+3}+\left(\sqrt{5x-1}-1\right)^2+\left(x+1\right)^2=-2\)

\(\Rightarrow\) Phương trình vô nghiệm

`#3107.101107`

a,

\(\text{A = }\left\{x\in R\text{ | }\left(2x-x^2\right)\left(3x-2\right)=0\right\}\)

`<=> (2x - x^2)(3x - 2) = 0`

`<=>`\(\left[{}\begin{matrix}2x-x^2=0\\3x-2=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x\left(2-x\right)=0\\3x=2\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\2-x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\x=2\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy, `A = {0; 2; 2/3}`

b,

\(\text{B = }\left\{x\in R\text{ | }2x^3-3x^2-5x=0\right\}\)

`<=> 2x^3 - 3x^2 - 5x = 0`

`<=> x(2x^2 - 3x - 5) = 0`

`<=>`\(\left[{}\begin{matrix}x=0\\2x^2-3x-5=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\2x^2-2x+5x-5=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\\left(2x^2-2x\right)+\left(5x-5\right)=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\2x\left(x-1\right)+5\left(x-1\right)=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\\left(2x+5\right)\left(x-1\right)=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\2x+5=0\\x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\\x=1\end{matrix}\right.\)

Vậy, `B = {-5/2; 0; 1}.`

c,

\(\text{C = }\left\{x\in Z\text{ | }2x^2-75x-77=0\right\}\)

`<=> 2x^2 - 75x - 77 = 0`

`<=> 2x^2 - 2x + 77x - 77 = 0`

`<=> (2x^2 - 2x) + (77x - 77) = 0`

`<=> 2x(x - 1) + 77(x - 1) = 0`

`<=> (2x + 77)(x - 1) = 0`

`<=>`\(\left[{}\begin{matrix}2x+77=0\\x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}2x=-77\\x=1\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=-\dfrac{77}{2}\\x=1\end{matrix}\right.\)

Vậy, `C = {-77/2; 1}`

d,

\(\text{D = }\left\{x\in R\text{ | }\left(x^2-x-2\right)\left(x^2-9\right)=0\right\}\)

`<=> (x^2 - x - 2)(x^2 - 9) = 0`

`<=>`\(\left[{}\begin{matrix}x^2-x-2=0\\x^2-9=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x^2+x-2x-2=0\\x^2=9\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}\left(x^2+x\right)-\left(2x+2\right)=0\\x^2=\left(\pm3\right)^2\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x\left(x+1\right)-2\left(x+1\right)=0\\x=\pm3\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}\left(x-2\right)\left(x+1\right)=0\\x=\pm3\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x-2=0\\x+1=0\\x=\pm3\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=2\\x=-1\\x=\pm3\end{matrix}\right.\)

Vậy, `D = {-1; -3; 2; 3}.`