K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 12 2021

\(cotx=cot70^0\)

\(\Rightarrow x=70^0+k180^0\) (\(k\in Z\))

NV
24 tháng 9 2019

ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\frac{sinx}{cosx}+\frac{cosx}{sinx}+14=\frac{cos^22x}{sin^22x}\)

\(\Leftrightarrow\frac{2}{sin2x}+14=\frac{1-sin^22x}{sin^22x}\)

Đặt \(sin2x=a\) với \(\left\{{}\begin{matrix}a\ne0\\\left|a\right|\le1\end{matrix}\right.\)

\(\frac{2}{a}+14=\frac{1-a^2}{a^2}\Leftrightarrow15a^2+2a-1=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{1}{5}\\a=-\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=\frac{1}{5}=sin\alpha\\sin2x=-\frac{1}{3}=sin\beta\end{matrix}\right.\) \(\Rightarrow...\)

NV
16 tháng 9 2020

c.

ĐKXĐ: ...

\(\Leftrightarrow cot\left(2x-\frac{3\pi}{4}\right)=cot\left(\frac{2\pi}{3}-x\right)\)

\(\Leftrightarrow2x-\frac{3\pi}{4}=\frac{2\pi}{3}-x+k\pi\)

\(\Leftrightarrow x=\frac{17\pi}{36}+\frac{k\pi}{3}\)

d.

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(\frac{3\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{3\pi}{4}-x+k2\pi\\2x+\frac{\pi}{3}=x-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)

NV
16 tháng 9 2020

a.

ĐKXĐ: ...

\(\Leftrightarrow tan\left(3x-\frac{\pi}{3}\right)=tan\left(-x\right)\)

\(\Leftrightarrow3x-\frac{\pi}{3}=-x+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)

b.

ĐKXĐ: ...

\(\Leftrightarrow cot\left(x-\frac{\pi}{4}\right)=cot\left(-x\right)\)

\(\Leftrightarrow x-\frac{\pi}{4}=-x+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(\cot x = 1 \Leftrightarrow \cot x = \cot \frac{\pi }{4} \Leftrightarrow x = \frac{\pi }{4} + k\pi \)

b) \(\cot x = \cot \left( { - {{83}^ \circ }} \right) \Leftrightarrow x =  - {83^ \circ } + k{.180^ \circ }\)

23 tháng 8 2023

a) Để giải phương trình cot(12x + π/4) = -1, ta áp dụng tính chất của hàm cơ-tang:

cot(12x + π/4) = -1 => 12x + π/4 = π + nπ (với n là số nguyên) => 12x = 3π/4 + nπ - π/4 => 12x = 2π/4 + nπ => 12x = π/2 + nπ => x = (π/2 + nπ)/12 (với n là số nguyên)

b) Để giải phương trình cot(4x) = 1/√3, ta áp dụng tính chất của hàm cơ-tang:

cot(4x) = 1/√3 => 4x = π/6 + nπ (với n là số nguyên) => x = (π/6 + nπ)/4 (với n là số nguyên)

c) Để giải phương trình cot(x + 15 độ) = cot(60 độ), ta áp dụng tính chất của hàm cơ-tang:

cot(x + 15 độ) = cot(60 độ) => x + 15 độ = 60 độ + n180 độ (với n là số nguyên) => x = 45 độ + n180 độ (với n là số nguyên)

d) Để giải phương trình cot(30 độ - 2x) = cot(10 độ), ta áp dụng tính chất của hàm cơ-tang:

cot(30 độ - 2x) = cot(10 độ) => 30 độ - 2x = 10 độ + n180 độ (với n là số nguyên) => -2x = -20 độ + n180 độ => x = 10 độ - n90 độ (với n là số nguyên)

a: cot(1/2x+pi/4)=-1

=>cot(1/2x+pi/4)=cot(-pi/4)

=>1/2x+pi/4=-pi/4+kpi

=>1/2x=-pi/2+kpi

=>x=-pi+k2pi

b: cot 4x=1/căn 3

=>4x=pi/3+kpi

=>x=pi/12+kpi/4

c: cot(x+15 độ)=cot 60 độ

=>x+15 độ=60 độ+k*180 độ

=>x=45 độ+k*180 độ

d: cot(30 độ-2x)=cot 10 độ

=>30 độ-2x=10 độ+k*180 độ

=>2x=20 độ-k*180 độ

=>x=10 độ-k*90 độ

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

a1.

$\cot (2x+\frac{\pi}{3})=-\sqrt{3}=\cot \frac{-\pi}{6}$

$\Rightarrow 2x+\frac{\pi}{3}=\frac{-\pi}{6}+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{-\pi}{4}+\frac{k}{2}\pi$ với $k$ nguyên

a2. ĐKXĐ:...............

$\cot (3x-10^0)=\frac{1}{\cot 2x}=\tan 2x$

$\Leftrightarrow \cot (3x-\frac{\pi}{18})=\cot (\frac{\pi}{2}-2x)$

$\Rightarrow 3x-\frac{\pi}{18}=\frac{\pi}{2}-2x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{\pi}{9}+\frac{k}{5}\pi$ với $k$ nguyên.

 

 

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

a3. ĐKXĐ:........

$\cot (\frac{\pi}{4}-2x)-\tan x=0$

$\Leftrightarrow \cot (\frac{\pi}{4}-2x)=\tan x=\cot (\frac{\pi}{2}-x)$

$\Rightarrow \frac{\pi}{4}-2x=\frac{\pi}{2}-x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=-\frac{\pi}{4}+k\pi$ với $k$ nguyên.

a4. ĐKXĐ:.....

$\cot (\frac{\pi}{6}+3x)+\tan (x-\frac{\pi}{18})=0$

$\Leftrightarrow \cot (\frac{\pi}{6}+3x)=-\tan (x-\frac{\pi}{18})=\tan (\frac{\pi}{18}-x)$

$=\cot (x+\frac{4\pi}{9})$

$\Rightarrow \frac{\pi}{6}+3x=x+\frac{4\pi}{9}+k\pi$ với $k$ nguyên

$\Rightarrow x=\frac{5}{36}\pi + \frac{k}{2}\pi$ với $k$ nguyên. 

16 tháng 9 2017

a) x=pi/4+kpi

b)x=-pi/4+kpi

c)x=pi/2+kpi

13 tháng 12 2022

cotx=cot 2/3pi

=>x=2pi/3+kpi

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(\cot x = 1\; \Leftrightarrow \cot x = \cot \frac{\pi }{4}\;\;\; \Leftrightarrow x = \frac{\pi }{4} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

b) \(\sqrt 3 \cot x + 1 = 0\;\;\; \Leftrightarrow \sqrt 3 \cot x =  - 1\; \Leftrightarrow \cot x =  - \frac{{\sqrt 3 }}{3}\;\; \Leftrightarrow \cot x = \cot \left( { - \frac{\pi }{3}} \right)\)

\( \Leftrightarrow x =  - \frac{\pi }{3} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

13 tháng 1 2017