Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\\ \)(1)
\(\left(1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)
\(x^2+1\ge1\forall x\Rightarrow2x+1\ge0\Rightarrow!2x+1!=2x+1\)
\(\left(1\right)\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)
\(\left(1\right)\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\\ \)
\(\left(1\right)\Leftrightarrow2x+1=\left(2x+1\right)\left(x^2+1\right)\Leftrightarrow\left(2x+1\right).\left(1-\left(x^2+1\right)\right)=0\)
\(\left\{\begin{matrix}2x+1=0\\-x^2=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=-\frac{1}{2}\\x=0\end{matrix}\right.\)
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)
\(\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left[2\left(x+\frac{1}{2}\right)\left(x^2+1\right)\right]\)
\(\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)}=\left(x+\frac{1}{2}\right)\left(x^2+1\right)\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)\left(x-\frac{1}{2}+1\right)}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(-1-x^2+1\right)=0\)
\(\Leftrightarrow-x^2\left(x+\frac{1}{2}\right)=0\)\(\Leftrightarrow\left[\begin{matrix}-x^2=0\\x+\frac{1}{2}=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=0\\x=-\frac{1}{2}\end{matrix}\right.\)
c) Ta có:
\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
\(\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)
\(\Leftrightarrow\frac{\sqrt{x^2+3}-2\sqrt{x}}{\sqrt{x}}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\sqrt{x^3+3x}+2x}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\\sqrt{x^3+3x}+2x=2\left(x+1\right)\end{cases}}\)
+) \(x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
+) \(\sqrt{x^3+3x}+2x=2x+2\Rightarrow x=1\)
a/ Đặt \(\sqrt{2\left(x^2-x\right)}=a\)
\(\Rightarrow a^4-2a^2=a\)
\(\Leftrightarrow a\left(a+1\right)\left(a^2-a-1\right)=0\)
Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Thanks trước!
ĐK : tự làm :
Đặt \(\sqrt{2x+3x-\sqrt{x+2}}=a;\sqrt{2x+4+\sqrt{x+2}}=b\)
TA có : \(b^2-a^2=1+2\sqrt{x+2}=a+b\)
=> b - a = 1 => b = 1 + a
=> \(\sqrt{2x+4+\sqrt{x+2}}=1+\sqrt{2x+3-\sqrt{x+2}}\)
=> \(2x+4+\sqrt{x+2}=1+2x+3-\sqrt{x+2}+2\sqrt{2x+3-\sqrt{x+2}}\)
=> \(2\sqrt{x+2}=2\sqrt{2x+3-\sqrt{x+2}}\)
=> \(x+2=2x+3-\sqrt{x+2}\)
=> \(\sqrt{x+2}=x+1\)
tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,
Akai Haruma, @Nguyễn Việt Lâm
giúp mk vs! ngày mai phải nộp r
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
a) Ta có:
\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
\(\frac{\Leftrightarrow4}{x}-x+\sqrt{x-\frac{1}{x}}-\sqrt{2x-\frac{5}{x}}=0\left(1\right)\)
Dật \(u=\sqrt{x-\frac{1}{x}};v=\sqrt{2x-\frac{5}{x}}\left(u,v\ge0\right)\Rightarrow u^2-v^2=\frac{4}{x}-x\)
Do đó (1) trở thành: \(u^2-v^2+u-v=0\Rightarrow u=v\)
Đến đây bạn tự giải nhé
Lời giải:
ĐKXĐ:..........
PT \(\Leftrightarrow \frac{2x^2+x}{\sqrt{2x^2+x+10}}=\sqrt{2x^2+x+4}-2=\frac{2x^2+x}{\sqrt{2x^2+x+4}+2}\)
\(\Leftrightarrow (2x^2+x)\left(\frac{1}{\sqrt{2x^2+x+10}}-\frac{1}{\sqrt{2x^2+x+4}+2}\right)=0\)
Nếu $2x^2+x=0\Rightarrow x=0$ hoặc $x=-\frac{1}{2}$ (thỏa mãn)
Nếu \(\frac{1}{\sqrt{2x^2+x+10}}-\frac{1}{\sqrt{2x^2+x+4}+2}=0\Rightarrow \sqrt{2x^2+x+10}=\sqrt{2x^2+x+4}+2\)
\(\Leftrightarrow \frac{6}{\sqrt{2x^2+x+10}+\sqrt{2x^2+x+4}}=2\)
\(\Rightarrow \sqrt{2x^2+x+10}+\sqrt{2x^2+x+4}=3\)
Điều này vô lý do \(2x^2+x+10=x^2+(x+\frac{1}{2})^2+\frac{39}{4}>9\Rightarrow \sqrt{2x^2+x+10}>3\)
và $\sqrt{2x^2+x+4}>0$
Vậy........