Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian A, B làm một mình xong công việc lần lượt là x, y (y > x > 0; y > 12, đơn vị: ngày)
Mỗi ngày các bạn A, B lầm lượt làm được 1 x và 1 y (công việc)
Vì hai bạn A và B cùng làm chung một công việc thì hoàn thành sau 8 ngày nên ta có: 1 x + 1 y = 1 8 (1)
Do làm một mình xong công việc thì B làm lâu hơn A là 12 ngày nên ta có phương trình: y – x = 12 (2)
Từ (1) và (2) ta có hệ phương trình 1 x + 1 y = 1 8 y − x = 12 ⇒ y = x + 12 1 x + 1 x + 12 = 1 8 ( * )
Giải (*):
1 x + 1 x + 12 = 1 8 ⇔ 8 x + 12 + 8 x 8 x x + 12 = x x + 12 8 x x + 12 ⇒ 16 x + 96 = x 2 + 12 x
x 2 – 4 x – 96 = 0 ⇔ x 2 + 8 x – 12 x – 96 = 0 ⇔ x ( x + 8 ) – 12 ( x + 8 ) = 0
⇔ ( x – 12 ) ( x + 8 ) = 0 ⇔ x = 12 ( N ) x = − 8 ( L )
Với x = 12 ⇒ y = x + 12 = 24
Vậy B hoàn thành cả công việc trong 24 ngày
Suy ra sau khi A làm một mình xong 1 3 công việc rồi nghỉ, B hoàn thành 2 3 công việc cong lại trong 2 3 .24 = 16 ngày.
Đáp án: A
Gọi thời gian A, B làm một mình xong công việc lần lượt là x, y (y > x > 6, đơn vị: ngày)
Mỗi ngày các bạn A, B lầm lượt làm được 1 x và 1 y (công việc)
Vì hai bạn A và B cùng làm chung một công việc thì hoàn thành sau 6 ngày nên ta có: 1 x + 1 y = 1 6 (1)
Do làm một mình xong công việc thì B làm lâu hơn A là 9 ngày nên ta có phương trình: y – x = 9 (2)
Từ (1) và (2) ta có hệ phương trình:
1 x + 1 y = 1 6 y − x = 9 ⇒ x = 9 y = 18 (thỏa mãn)
Vậy B hoàn thành cả công việc trong 18 ngày.
Suy ra sau khi A làm một mình xong nửa công việc rồi nghỉ, B hoàn thành công việc còn lại trong 9 ngày
Gọi thời gian đội 1 và đội 2 hoàn thành công việc một mình lần lượt là x(ngày), y( ngày)(x,y>12)
Mỗi ngày đội 1 làm được phẫn việc là 1/x
Đội 2 làm được số phần việc là 1/y
cả hai đội làm được số phần việc là 1/12
ta có phương trình: 1/x+1/y=1/12(1)
Đội 1 làm trong 5 ngày rồi nghỉ, dội 2 làm tiếp 15 ngày thì họ làm được 75%công việc
từ đó ta có phương trình: 5/x+15/y=3/4(2)
Từ (1)(2) ta có hệ phương trình:{1/x+1/y=1/12; 5/x+15/y=3/4
Giải hệ pt ta tìm được x=20; y=30
KL:Nếu làm một mình thì đội thứ nhất hoàn thành công việc trong 20 ngày, đội thứ hai hoàn thành công việc trong 30 ngày.
Lời giải:
Giả sử nếu làm 1 mình thì người 1 và người 2 lần lượt hoàn thành công việc trong $a$ và $b$ giờ
Trong 1 giờ: Người 1 làm $\frac{1}{a}$ công việc, người 2 làm $\frac{1}{b}$ công việc.
Theo bài ra ta có:
\(\left\{\begin{matrix} \frac{18}{a}+\frac{18}{b}=1\\ \frac{15+9}{a}+\frac{9}{b}=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{18}{a}+\frac{18}{b}=1\\ \frac{24}{a}+\frac{9}{b}=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{30}\\ \frac{1}{b}=\frac{1}{45}\end{matrix}\right.\)
Vậy người thứ 2 làm một mình trong 45 giờ thì hoàn thành.
Gọi A là số công việc đội 1 và đội 2 làm được trong 1 ngày.
Gọi B là số công việc đội 3 làm được trong 1 ngày.
Cả 3 đội trong 1 ngày làm được A + B công việc
Theo bài ra ta có hệ phương trình
4 * (A + B) + 12 * A = 1 hay 4A +4B + 12A = 1 hay 16A +4B = 1 (1)
6 * (A + B) + 9 * A = 1 hay 6A + 6B + 9A =1 hay 15A + 6B = 1 (2)
Nhân (1) với 3, nhân (2) với 2 ta có hệ
48A + 12B = 3 (3)
30A + 12B = 2 (4)
Trừ (3) cho (4) ta có
18A = 1, suy ra A = 1/18
Thời gian chỉ đội 1 và đội 2 cùng làm hoàn thành công việc là
1 : 1/18 = 18 ngày
Vậy chỉ đội 1 và đội 2 cùng làm thì sau 18 ngày sẽ hoàn thành công việc.
Gọi thời gian A, B làm một mình xong công việc lần lượt là x, y (y > x > 6, đơn vị: ngày)
Mỗi ngày các bạn A, B lầm lượt làm được 1 x và 1 y (công việc)
Vì hai bạn A và B cùng làm chung một công việc thì hoàn thành sau 6 ngày nên ta có: 1 x + 1 y = 1 6 (1)
Do làm một mình xong công việc thì B làm lâu hơn A là 9 ngày nên ta có phương trình: y – x = 9 (2)
Từ (1) và (2) ta có hệ phương trình:
1 x + 1 y = 1 6 y − x = 9 ⇒ x = 9 y = 18 (thỏa mãn)
Vậy B hoàn thành cả công việc trong 18 ngày.
Suy ra sau khi A làm một mình xong nửa công việc rồi nghỉ, B hoàn thành công việc còn lại trong 9 ngày.
Đáp án: A