K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2016

Gọi x (đồng) là giá tiền một quả quýt và y (đồng) là giá tiền một quả cam. Điều kiện
x > 0, y > 0 ta có hệ phương trình:

\(10x+7y=17800\) 

\(12x+6y=18000\)

<=> Hệ phương trình  \(10x+7y=17800\)

                                   \(2x+y=3000\)

<=> Hệ phương trình    2x + y = 3000

                                     2y = 28000

<=>  x= 800 và y = 1400.

Trả lời: Giá tiền một quả quýt: 800 đồng, một quả cam 1400 đông

19 tháng 1 2016

Vân:10 quả quýt,7 quả cam=17 800 đồng

Lan:12 quả quýt,6 quả cam=18 000 đồng

Nếu  cả số quýt và cam của vân mua gấp lên 2 lần thì đc

                 20 quýt+14 cam=35 600 đồng

                -12 quýt+6 cam=18 000đông

                 =8 quýt+8 cam=17 600 đồng

                   giá tiền 1 quả quýt là: 17 600 -8=17 592  đồng

                   giá tiền1  quả cam là:  17 6 00- 17 592  =8

                 

 

22 tháng 9 2018

Gọi x và y lần lượt là giá tiền mỗi quả quýt và mỗi quả cam. (x > 0; y > 0)

Vân mua 10 quả quýt, 7 quả cam hết 17800 đồng nên ta có:

     10x + 7y = 17800

Lan mua 12 quả quýt, 6 quả cam hết 18000 đồng nên ta có:

     12x + 6y = 18000

Từ đó ta có hệ:

Giải bài 3 trang 68 sgk Đại số 10 | Để học tốt Toán 10

Từ (2) rút ra được y = 3000 – 2x, thay vào (1) ta được :

     10x + 7.(3000 – 2x) = 17800

⇔ 10x + 21000 – 14x = 17800

⇔ 4x = 3200 ⇔ x = 800 (thỏa mãn)

Thay x = 800 vào y = 3000 – 2x ta được y = 1400 (thỏa mãn)

Vậy giá tiền một quả quýt là 800đ và giá tiền một quả cam là 1400đ.

27 tháng 12 2020

Gọi x là số kg cam 

y là số kg quýt 

Theo đề , ta có 

\(\hept{\begin{cases}x+y=6\\15000x+20000y=100000\end{cases}}\)    

\(\hept{\begin{cases}x=4\\y=2\end{cases}}\)

1 tháng 5 2016

                                                                     Giải: 

2/3 cây cam = 3/5 cây quýt và = 6/7 cây vải thều hay 6/9 cây cam = 6/10 cây quýt = 6/7 cây vải thều

Vậy số cây cam chiếm 9 phần, số cây quýt chiếm 10 phần và số cây vải thều chiếm 7 phần.

                                     Số cây cam là: 1950 : ( 9 + 10 + 7 ) * 9 = 675 ( cây )

                                     Số cây quýt là: 1950 : (9  + 10 + 7 ) * 10= 750 (cây)

                                     Số cây vải thều là: 1950 - ( 675 + 750 ) =  525 (cây)

                                                               Đ/S:    Cam :  675 cây ;  quýt : 750 cây ; vải thều : 525 cây .

                                                                                                                                           hihi

1 tháng 5 2016

                                                                        Giải:

2/3 cây cam =3/5 cây quýt và bằng 6/7 cây vải thều

   

25 tháng 5 2019

Gọi số quýt ban đầu ở mỗi rổ là x (quả)

Muốn lấy 30 quả ở rổ thứ nhất đưa sang rổ thứ hai thì số quả ở mỗi rổ lúc đầu phải nhiều hơn 30 quả hay x > 30.

Khi đó rổ thứ nhất còn x – 30 quả; rổ thứ hai có x + 30 quả.

Vì số quả ở rổ thứ hai bằng 1/3 bình phương số quả còn lại ở rổ thứ nhất nên ta có phương trình:

Giải bài 3 trang 62 sgk Đại số 10 | Để học tốt Toán 10

Giải phương trình (1):

Giải bài 3 trang 62 sgk Đại số 10 | Để học tốt Toán 10

Vì x > 30 nên x = 45 thỏa mãn.

Vậy ban đầu mỗi rổ có 45 quả cam.

2 tháng 4 2017

Gọi x là số quýt chứa trong một rổ lúc đầu. Điều kiện x nguyên, x > 30. Ta có phương trình

(x – 30)2 = x + 30 ⇔ x2 – 3x + 810 = 0

⇔ x = 45 (nhận), x = 18 (loại).

Trả lời: Số quýt ở mỗi rổ lúc đầu: 45 quả.


14 tháng 5 2016

       Sau khi mua thì Cường còn lại \(\frac{3}{5}=\frac{15}{25}\) số tiền, Huy còn lại \(\frac{5}{7}=\frac{15}{21}\) số tiền.

Ta thấy thấy tiền của Cường có 25 phần thì tiền của Huy có 21 phần.

                 Giá trị 1 phần là:

                        219000:(15+15)=7300 (đồng)

                  Tiền của Cường có được là:

                          7300x25=182500(đồng)

                  Tiền của Huy có được là:

                           7300x21=153300 (đồng)

                                   Đáp số:153300 đồng

3 tháng 3 2018

Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.

    Điều kiện là x, y, z nguyên dương

    Ta có hệ phương trình

    x + y + z = 1450 (1)

    4x + 2y + z = 3000 (2)

    2x + y - 2z = 0 (3)

    Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được

    3x + y = 1550

    Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :

    7x + 4y = 4450.

    Giải hệ gồm hai phương trình (4) và (5) ta được.

    x = 350, y = 500.

    Thay các giá trị của x, y vào phương trình (1) ta được z = 600.

    Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.

16 tháng 8 2023

Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.

 

    Điều kiện là x, y, z nguyên dương

 

    Ta có hệ phương trình:

 

    x + y + z = 1450 (1)

 

    4x + 2y + z = 3000 (2)

 

    2x + y - 2z = 0 (3)

 

    Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được:

 

    3 x + y = 1550

 

    Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :

 

    7 x + 4 y = 4450.

 

    Giải hệ gồm hai phương trình (4) và (5) ta được:

 

    x = 350, y = 500.

 

    Thay các giá trị của x, y vào phương trình (1) ta được z = 600.

 

    Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.