K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trên quãng đường AB dài 60km , người thứ nhất đi từ A đến B và người thứhai đi từ B đến A. Hai người khởi hành cùng lúc đi ngược chiều nhau và gặp nhau tại C sau1giờ. Sau khi gặp nhau, người thứ nhất đi tiếp về B với vận tốc giảm đi 6 / km h và người thứhai tiếp tục đi về A với vận tốc không đổi. Kết quả người thứ nhất đến nơi sớm hơn ngườithứ hai 42 phút. Tính vận tốc...
Đọc tiếp

Trên quãng đường AB dài 60km , người thứ nhất đi từ A đến B và người thứ
hai đi từ B đến A. Hai người khởi hành cùng lúc đi ngược chiều nhau và gặp nhau tại C sau
1giờ. Sau khi gặp nhau, người thứ nhất đi tiếp về B với vận tốc giảm đi 6 / km h và người thứ
hai tiếp tục đi về A với vận tốc không đổi. Kết quả người thứ nhất đến nơi sớm hơn người
thứ hai 42 phút. Tính vận tốc ban đầu của cả hai người.Trên quãng đường AB dài 60km , người thứ nhất đi từ A đến B và người thứ
hai đi từ B đến A. Hai người khởi hành cùng lúc đi ngược chiều nhau và gặp nhau tại C sau
1giờ. Sau khi gặp nhau, người thứ nhất đi tiếp về B với vận tốc giảm đi 6 / km h và người thứ
hai tiếp tục đi về A với vận tốc không đổi. Kết quả người thứ nhất đến nơi sớm hơn người
thứ hai 42 phút. Tính vận tốc ban đầu của cả hai người.

0
4 tháng 2 2016

xe lửa đi từ a vận tốc là : 35km

xe lửa đi từ b vận tốc là : 30 km

27 tháng 4 2021

bài này làm sao vậy ạ

Bài 2: 

Theo đề, ta có:

\(\left\{{}\begin{matrix}\dfrac{6}{x}+\dfrac{6}{y}=\dfrac{3}{20}\\\dfrac{5}{x}+\dfrac{6}{y}=\dfrac{2}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{60}\\\dfrac{1}{y}=\dfrac{1}{40}-\dfrac{1}{60}=\dfrac{1}{120}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=60\\y=120\end{matrix}\right.\)

NV
24 tháng 3 2023

Đổi 2h40ph=8/3 giờ

Gọi vận tốc xe thứ nhất là x (km/h), vận tốc xe thứ hai là y (km/h) với x;y>0

Do 2 xe đi ngược chiều gặp nhau sau 3 giờ nên: \(x+y=\dfrac{120}{3}=40\)

Quãng đường xe thứ nhất đi được sau 2h40ph: \(\dfrac{8x}{3}\) (km)

Quãng đường còn lại: \(120-\dfrac{8x}{3}\)

Do hai xe gặp nhau khi xe thứ 2 đi được 1 giờ nên:

\(x+y=\left(120-\dfrac{8x}{3}\right):1\Leftrightarrow\dfrac{11x}{3}+y=120\)

Ta được hệ: \(\left\{{}\begin{matrix}x+y=40\\\dfrac{11x}{3}+y=120\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=30\\y=10\end{matrix}\right.\)