Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a.
1 giờ 15 phút = 1,25 giờ
Quãng đường xe 1 đi được sau 1 giờ 15 phút là:
\(v_1=\frac{s_1}{t}\Rightarrow s_1=v_1\times t=42\times1,25=52,5\left(km\right)\)
Quãng đường xe 2 đi được sau 1 giờ 15 phút là:
\(v_2=\frac{s_2}{t}\Rightarrow s_2=v_2\times t=36\times1,25=45\left(km\right)\)
Khoảng cách từ A đến xe 2 sau 1 giờ 15 phút là:
\(24+45=69\left(km\right)\)
Khoảng cách giữa 2 xe sau 1 giờ 15 phút là:
\(69-52,5=16,5\left(km\right)\)
b.
Vì v1 > v2 nên 2 xe có thể gặp nhau.
Hiệu 2 vận tốc:
42 - 36 = 6 (km/h)
Thời gian để 2 xe gặp nhau là:
24 : 6 = 4 (giờ)
2 xe gặp nhau lúc:
7 + 4 = 11 (giờ)
Khoảng cách từ A đến chỗ gặp nhau là:
\(v=\frac{s}{t}\Rightarrow s=v\times t=42\times4=168\left(km\right)\)
Bài 2:
a.
Tổng 2 vận tốc:
30 + 50 = 80 (km/h)
Thời gian để 2 xe gặp nhau:
120 : 80 = 1,5 (giờ)
Khoảng cách từ A đến chỗ gặp nhau:
\(v=\frac{s}{t}\Rightarrow s=v\times t=30\times1,5=45\left(km\right)\)
b.
Quãng đường còn lại là (không tính phần cách nhau 40 km của 2 xe):
120 - 40 = 80 (km)
Do thời gian là như nhau nên ta có:
s1 + s2 = 80
t . v1 + t . v2 = 80
t . (30 + 50) = 80
t = 80 : 80
t = 1 ( giờ)
Khoảng cách từ A đến vị trí 2 cách nhau 40 km là:
\(v=\frac{s}{t}\Rightarrow s=v\times t=1\times30=30\left(km\right)\)
ta có:
lúc xe ba gặp xe một thì:
S3=S1
\(\Leftrightarrow v_3t_3=v_1t_1\)
do xe ba xuất phát sau xe 1 30'=0,5h nên:
\(v_3t_3=v_1\left(t_3+0,5\right)\)
\(\Leftrightarrow v_3t_3=10\left(t_3+0,5\right)\)
\(\Leftrightarrow v_3t_3=10t_3+5\)
\(\Leftrightarrow v_3t_3-10t_3=5\)
\(\Rightarrow t_3=\frac{5}{v_3-10}\left(1\right)\)
lúc xe ba gặp xe một thì:
\(S_3'=S_2\)
\(\Leftrightarrow v_3t_3'=v_2t_2\)
do người ba đi sau người hai 30'=0,5h nên:
\(v_3t_3'=v_2\left(t_3'+0,5\right)\)
\(\Leftrightarrow v_3t_3'=12\left(t_3'+0,5\right)\)
\(\Leftrightarrow v_3t_3'-12t_3'=6\)
\(\Rightarrow t_3'=\frac{6}{v_3-12}\left(2\right)\)
ta lại có:
do thời gian hai lằn gặp cách nhau 1h nên:
\(t_3'-t_3=\Delta t\)
thế hai phương trình (1) và (2) vào phương trình trên ta được:
\(\frac{6}{v_3-12}-\frac{5}{v_3-10}=1\)
\(\Leftrightarrow\frac{6\left(v_3-10\right)-5\left(v_3-12\right)}{\left(v_3-12\right)\left(v_3-10\right)}=1\)
\(\Leftrightarrow6v_3-60-5v_3+60=v_3^2-10v_3-12v_3+120\)
\(\Leftrightarrow v_3=v_3^2-22v_3+120\)
\(\Leftrightarrow v_3^2-23v_3+120=0\)
giải phương trình trên ta dược:
v3=15km/h
v3=8km/h(loại)
vậy vận tốc của người ba là 15km/h
Thời gian để cả hai người đi từ A-B trong thời gian từ 5h30p đến 7h là
7 - 5,5 = 1,5 (h)
Trước khi xe hư người thứ nhất đi đc quãng đường dài là
50 : 2 = 25 (km)
Vận tốc của xe một và xe hai là ( vì theo đề ra vận tốc hai xe chuyển động đều với V1 )
50 : 1,5 = 33,33 ( xấp xỉ 33,33 )
Thời gian của xe thứ nhất trong quãng đường đầu ( 25 km ) là
1,5 : 2 = 0,75 (h)
Vậy thời gian cần đi trong nửa đoạn đường sau là 0,75 h
Đổi 15p = 0,25h
Vì khi đi được nửa qđ đầu thì xe 1 bị hư và sửa mất 15p. Vậy thời gian cần đi để đúng với dự tính ban đầu là : 0,75 - 0,25 = 0,5 (h)
Vậy xe 1 đi trong nửa đoạn cuối với vận tốc là
25 : 0,5 = 50 ( km/h )
Xe 1 cần tăng số km/h để đến B vào lúc 7h theo dự tính ban đầu là
50 - 33,33 = 16,67 ( km/h )
Đáp số : 16,67 Km/h
Không biết có đúng không, cho mình hỏi V1 là ttoongr vận tốc 2 xe hay là vận tốc xe 1 = vận tốc xe 2 = V1. Nếu trường hợp hai thì theo cách mình, nếu trường hợp 1 thì để mình làm lại
a)QĐ AC dài là
Sac=15.1.3/4=20km
Khi người đi bộ ngồi nghỉ người đi XĐ đi Dc QĐ Là
s1=15.0.5=7,5km
QĐ người đi XĐ đi đc là
S2=5.2=10km
Khi đó,K/c giữa 2 xe là
s3=s2-S1=5.2=10km
2,5+v1t==v2t
2,5+5t=15t
=>10t=2,5=>t=0,25
=>Sbc=10+2,5+0,25.5=13,75km
=>Sab=20+13,5=33,75km
Khi người đi bộ ngồi nghỉ -> Người đi bộ đã đi được : 5 . 2 = 10 ( km )
Người xe đạp đi được quãng đường trong 1h :
\(15.1=15\left(\dfrac{km}{h}\right)=\dfrac{3}{4}AC\)
Gọi tg người đi xe đạp từ A đến B là : a (h)
-> \(AB=15a\left(km\right)\)
- (t) người đi bộ đi từ C -> B là : a+1 (h)
- CD = 10 km
- (t) người đi bộ từ D đến B là : \(\left(a+1\right)-2-0,5=a-1,5\left(h\right)\)
\(\Rightarrow DB=5.\left(a-1,5\right)\left(km\right)\)
\(\Rightarrow BC=CD+DB=10+5.\left(a-1,5\right)=5a+2,5\left(km\right)\)
Có AC + BC = AB
\(\Rightarrow20+5a+2,5=15a\)
\(\Rightarrow22,5=10a\)
\(\Rightarrow a=2,25\left(h\right)\)
\(AB=15a=15.2,25=33,75\left(km\right)\)
\(AD=AC+CD=20+10=30\left(km\right)\)
Để gặp người đi bộ chỗ ngồi nghỉ thì : tg đi từ A->D thuộc ( 1 ; 15 )
\(\rightarrow1\le\dfrac{30}{v_2}\le1,5\)
\(\Rightarrow30\ge v_2\ge20\left(\dfrac{km}{h}\right)\)
Gọi vận tốc ô tô đi từ A là \(v_A\), vận tốc ô tô đi từ B là \(v_b\)
\(9h48'=9,8h\)
Theo giả thiết:
\(\begin{cases}3.v_A+2.v_B=AB\left(1\right)\\1,8.v_a+2,8.v_b=AB\left(2\right)\end{cases}\)
Từ (1) và (2), ta có: \(3.v_A+2.v_B=1,8.v_a+2,8.v_B\)
\(1,2.v_a=0,8.v_b\)
\(v_B=1,5.v_A;v_a=\frac{3}{2}.v_B\)
Thay vào (1), ta có: \(\begin{cases}6.v_A=AB\\4.v_B=AB\end{cases}\)Vậy ô tô đi từ A mất 6h để đi hết quãng đường, ô tô đi từ B mất 4h để đi hết quãng đường.
Vậy hàng ngày ô tô đi từ A đến B lúc 12h, ô tô đi từ B đến A lúc 11h.
Gọi vận tốc của người đi xe đạp là x (km/giờ)
=> Vận tốc người đi xe máy là 4x
Thời gian người đi xe đạp đến B là 50/x
Thời gian người đi xe máy đến B là 40/x
Xe máy đến trước xe đáp :
1 + 1,5 = 2,5 (giờ)
Theo đề bài, ta có :
(50/x) - (50/4x) = 2,5
<=> 75/2x = 2,5 => x = 15 (km/giờ)
Vận tốc xe máy = 4x
=> Vận tốc xe máy = 15 . 4 = 60 (km/giờ)
bn ơi sao lại là 4x z
mk ko hiểu cho lắm bn có thể nói rõ cho mk hiểu một chút ko
a,Gọi S là độ dài quãng đường AB.
v1, v2 là vận tốc của người xuất phát tại A, B
Thời gian khi bắt đầu xuất phát đến khi 2 người gặp nhau tại C là:
\(t_1=\dfrac{3}{v_1}=\dfrac{S-3}{v_2}\)
Thời gian đi kể từ khi đi qua nhau đến khi gặp nhau tại D là:
\(t_2=\dfrac{3+S-4}{v_2}=\dfrac{S-3+4}{v_1}\)
Từ 2 phương trình trên, ta được:
\(\dfrac{S-3+4}{3+S-4}=\dfrac{3}{3-S}\)
\(\Rightarrow S=5km\)
b,Thế S vào 1 trong 2 phương trình trên, biến đổi, ta được
\(\dfrac{v_1}{v_2}=\dfrac{3}{2}\)
Cho mình hỏi cái khúc suy ra S=5 là làm thế nào vậy ạ? Mình chưa hiểu lắm í