K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Giải bài 32 trang 23 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cách 1.

Gọi thời gian để vòi thứ nhất, vòi thứ 2 chảy 1 mình đầy bể là x (h), y (h).

Giải bài 32 trang 23 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Một giờ vòi thứ nhất chảy được :1/x ( bể )

Một giờ vòi thứ hai chảy được :1/y ( bể )

+ Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) thì sau 4 4 5 = 24 5  giờ đầy bể.

=> Một giờ cả hai vòi chảy được :

Giải bài 32 trang 23 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Nếu ban đầu mở vòi 1 và 9 giờ sau mở thêm vòi 2 thì sau 6/5  (h) đầy bể. Khi đó, thời gian vòi 1 chảy là : 9 + 6 5 = 51 5 ( h )  .

Thời gian vòi 2 chảy là 6/5  (h)

Giải bài 32 trang 23 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy nếu ngay từ đầu chỉ mở vòi 2 thì sau 8 giờ sẽ đầy bể.

Cách 2.

Gọi lượng nước vòi thứ nhất và vòi thứ hai chảy một mình trong 1 giờ lần lượt là x (bể) và y (bể).

Điều kiện 0 < x, y < 1.

+ Cả hai vòi cùng chảy trong Giải bài 32 trang 23 SGK Toán 9 Tập 2 | Giải toán lớp 9 giờ đầy 1 bể nên ta có phương trình: 4,8x + 4,8y = 1.

+ Nếu mở vòi thứ nhất trong 9 giờ thì chảy được 9x (bể)

Giải bài 32 trang 23 SGK Toán 9 Tập 2 | Giải toán lớp 9 giờ sau mở thêm vòi thứ hai thì chảy thêm được: 1,2 (x + y) (bể)

Khi đó bể đầy nên ta có phương trình: 9x + 1,2(x + y) = 1.

Ta có hệ phương trình

Giải bài 32 trang 23 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ một giờ vòi hai chảy một mình được 1/8  bể

Vậy nếu ngay từ đầu chỉ mở vòi thứ hai thì sau 8 giờ sẽ đầy bể.

Kiến thức áp dụng

Giải bài toán bằng cách lập hệ phương trình :

Bước 1 : Lập hệ phương trình

- Chọn các ẩn số và đặt điều kiện thích hợp

- Biểu diễn các đại lượng chưa biết và đã biết theo ẩn

- Lập các phương trình biểu thị mối quan hệ giữa các đại lượng theo đề bài.

- Từ các phương trình vừa lập rút ra được hệ phương trình.

Bước 2 : Giải hệ phương trình (thường sử dụng phương pháp thế hoặc cộng đại số).

Bước 3 : Đối chiếu nghiệm với điều kiện và kết luận.

25 tháng 1 2018

Tham khảo :

hai vòi nước cùng chảy vào một cái bể không có nước,trong 4h48' sẽ đầy bể.nếu mở vòi thứ nhất trong 3h và vòi thứ hai trong 4h thì được 3/4 bể nước.hỏi mỗi vòi khác chảy thì trong bao lâu mới đầy bể?

 Gọi năng suất vòi 1 là x (x>0) (năng suất ở đây hiểu là sau 1 giờ thì vòi 1 chảy được 1 lượng nước nào đó). Gọi năng suất vòi 2 là y (y>0) => năng suất chung cả hai vòi là x+y. Do sau 4,8 giờ (4h48') thì 2 vòi chảy cùng đầy bể nên 1 giờ thì 2 vòi chảy được lượng nước là 1/4,8 bể = 5/24 bể => x+y =5/24 (1). Do mở vòi thứ nhất trong 3h và vòi thứ hai trong 4h thì được 3/4 bể nước nên ta có phương trình 3x+4y=3/4 (bể) (2), từ (1) và (2) => ta có hệ phương trình x+y =5/24 và 3x+4y=3/4. Giải hệ phương trình này ta được x=1/12 và y=1/8. => thời gian chảy đẩy bể của vòi 1 là 1/x = 12h, và tương tự thì vòi 2 là 8h

10 tháng 4 2017

Gọi x, y lần lượt là thời gian để hai vòi chảy một mình thì đầy bể \(\left(x,y>4\dfrac{4}{5};giờ\right)\)

Đổi \(4\dfrac{4}{5}\left(h\right)=\dfrac{24}{5}\left(h\right)\)

Một giờ vòi 1 chảy được \(\dfrac{1}{x}\) bể, vòi 2 chảy được \(\dfrac{1}{y}\). Trong một giờ cả hai vòi chảy được \(1:\dfrac{24}{5}=\dfrac{5}{24}\) (bể)

Vậy ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\)

Trong \(\dfrac{6}{5}\left(h\right)\) hai vòi chảy được là: \(\dfrac{6}{5}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) (bể)

Theo giả thiết ta lại có phương trình: \(\dfrac{9}{x}+\dfrac{6}{5}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)

Vậy ta có hệ: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\\\dfrac{51}{5x}+\dfrac{6}{5y}=1\end{matrix}\right.\)

Đặt \(\dfrac{1}{x}=u;\dfrac{1}{y}=v\Rightarrow\left\{{}\begin{matrix}u+v=\dfrac{5}{24}\\\dfrac{51}{5}u+\dfrac{6}{5}v=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}u=\dfrac{1}{12}\\v=\dfrac{1}{8}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{12}\\\dfrac{1}{y}=\dfrac{1}{8}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=12\\y=8\end{matrix}\right.\left(tm\right)\)

Vậy nếu ngay từ đầu chỉ mở vòi hai thì sau 8 giờ sẽ đầy bể.

9 tháng 4 2017

Gọi x (giờ) là thời gian để vòi thứ nhất chảy đầy bể (x > 0).

y (giờ) là thời gian để vòi thứ hai chảy đầy bể (y > 0).

Trong 1 giờ vòi thứ nhất chảy được bể, vòi thứ hai chảy được bể.

Cả hai vòi cùng chảy thì bể đầy sau giờ = giờ nên trong 1 giờ cả hai vòi cùng chảy được bể.

Ta được: + =

Trong 9 giờ cả hai vòi chảy được bể.

Trong giờ cả hai vòi chảy được ( + ) bể.



10 tháng 1 2016

bài trong sgk mà bạn

 

10 tháng 1 2016

Gọi x(h) là thời gian vòi 1 chảy đầy bể một mình 
y(h) là thời gian vòi 2 chảy đầy bể một mình 
(x,y thuộc N; x,y >4,8) 

Vì khi 2 vòi chảy chung thì mất 4,8 = 24/5 (h) mới đầy bể nên 
ta có pt 
1/x + 1/y = 5/24. 

Thòi gian vòi 1 chảy : 9 + 1,2 = 51/5 (h) 
Thòi gian vòi 2 chảy : 1,2 = 6/5 (h) 
ta có pt 
51/5 . 1/x + 6/5 . 1/y = 1 

Đặt 1/x = a, 1/y = b 
Ta có hpt 

a + b = 5/24 
51/5 . a + 6/5 . b = 1 

giải hệ trên, ta đc 
a= 1/12 => x=12 
b= 1/8 => y= 8 

vậy nếu từ đầu chỉ mở vòi 2 thì sau 8 (h) mới đầy bể

Gọi x(h) là thời gian vòi 1 chảy một mình đầy bể

Gọi y(h) là thời gian vòi 2 chảy một mình đầy bể

(Điều kiện: x>12; y>12)

Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)

Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)

Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{12}\)(bể)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)(1)

Vì khi vòi 1 chảy trong 3 giờ và vòi 2 chảy thêm 18 giờ mới đầy bể nên ta có phương trình: 

\(\dfrac{3}{x}+\dfrac{18}{y}=1\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{3}{x}+\dfrac{18}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{1}{4}\\\dfrac{3}{x}+\dfrac{18}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-15}{y}=\dfrac{-3}{4}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\\dfrac{1}{x}=\dfrac{1}{12}-\dfrac{1}{20}=\dfrac{1}{30}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=30\\y=20\end{matrix}\right.\)(thỏa ĐK)

Vậy: Vòi 1 cần 30 giờ để chảy đầy bể khi chảy một mình

Vòi 2 cần 20 giờ để chảy đầy bể khi chảy một mình

19 tháng 2 2021

bổ sung là vòi 1 chảy 3h xong khóa lại rồi mới chỉ mở vòi 2 trong 18h ạ

 

11 tháng 8 2023

Đổi 6h40p=20/3h ; 4h24p=22/5h 

Mỗi giờ vòi I, II chảy được lần lượt x,y lượng nước tỉ lệ so với bể (x,y>0)

Ta có: 20/3 x + 20/3 y = 1 (a)

Bên cạnh đó, vòi I chảy 4h24p và vòi II chảy 2h được 2/3 bể:

=> 22/5 x + 2y = 2/3 (b)

Từ (a), (b) lập hpt:

\(\left\{{}\begin{matrix}\dfrac{20}{3}x+\dfrac{20}{3}y=1\\\dfrac{22}{5}x+2y=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{72}\left(TM\right)\\y=-\dfrac{1}{360}\left(loại\right)\end{matrix}\right.\)

Xem lại đề em ơi

 

1 tháng 2 2018

Gọi thời gian mà vòi thứ nhất chảy riêng đầy bể là x (giờ), (x > 0)

Trong một giờ:

- Vòi thứ nhất chảy được 1/x (bể)

- Vòi thứ hai chảy được 1/(x+4) (bể)

- Vòi thứ ba chảy được 1/6 (bể)

Khi mở cả ba vòi thì vòi thứ nhất và vòi thứ hai chảy vào bể còn vòi thứ ba cho nước ở bể chảy ra nên ta có phương trình:

Vậy chỉ dùng vòi thứ nhất thì sau 8 giờ bể đầy nước

Đáp án: D