K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow _2^4He + _3^6X\)

Áp dụng định luật bảo toàn động lượng \(\overrightarrow P_p=\overrightarrow P_{He}+ \overrightarrow P_{X} \) (do hạt Be đứng yên)

PPPHeXp

Dựa vào hình vẽ ta có \(P_{p}^2+ P_{He}^2 = P_X^2\)

=> \(2m_{p}K_{p}+2m_{He} K_{He} = 2m_{X}K_{X}. \)

=> \(K_{p}+4K_{He} = 6K_{X} => K_X = 6MeV.\)

21 tháng 10 2018

Đáp án C

1 tháng 5 2018

Vì hạt Be đứng yên nên theo định luật bảo toàn động lượng

Đáp án A

8 tháng 3 2019

Đáp án C

22 tháng 12 2018

Đáp án C

Phương pháp:

Sử dụng định luật bảo toàn số khối và bảo toàn điện tích để viết phương trình phản ứng.

Sử dụng định luật bảo toàn động lượng trong phản ứng hạt nhân.

Công thức liên hê ̣giữa động lượng và động năng: p 2 = 2mK

Công thức tính năng lượng toả ra của phản ứng: ∆E = (mt – ms)c2 = Ks - Kt

(Kt, Ks lần lượt là tổng động năng của các hạt trước vàsau phản ứng)

Cáchgiải

+ PT phản ứng: 

 

  

+ Theo định luật bảo toàn động lượng ta có: 

    

 

ta biểu diễn bằng hình vẽ sau

 

Từ hình vẽ ta có:   

 

 

 

 

Năng lượng tỏa ra của phản ứng :

 

 

 

 

 

13 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow _2^4He + _3^6X\)

Áp dụng định luật bảo toàn động lượng \(\overrightarrow P_p+0 =\overrightarrow P_{He}+ \overrightarrow P_{X} \)(hạt nhân Be đứng yên)

Dựa vào hình vẽ ta có

  P P P He X p

     \(P_{p}^2+ P_{He}^2 = P_X^2\)

=> \(2m_{p}K_{p}+2m_{He} K_{He} = 2m_{X}K_{X}. \)

=> \(K_{p}+4K_{He} = 6K_{X} => K_X = 3,575MeV.\)

Áp dụng định luật bảo toàn năng lượng toàn phần (hạt nhân Be đứng yên)

        \(K_{p}+m_{p}c^2+m_{Be}c^2 = K_{He} + m_{He}c^2+ K_{X}+m_{X}c^2\)

=> \((m_p-m_{He}-m_{X})c^2= K_{He}+K_X-K_p= 2,125MeV\)

Như vậy năng lượng tỏa ra của phản ứng chính bằng hiệu động năng của các hạt sau phản ứng cho động năng của các hạt trước phản ứng và bằng 2,125 MeV.

 

13 tháng 4 2016

đáp án D. 2,125MeV

14 tháng 3 2019

17 tháng 6 2019

Đáp án A

11 tháng 11 2017