K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Đây không phải là phương trình đường tròn do có \(xy\).

b) Vì \({a^2} + {b^2} - c = {1^2} + {2^2} - 5 = 0\)nên phương trình đã cho không là phương trình tròn.

c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {4^2} - 1 = 24 > 0\)nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;4} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c}  = 2\sqrt 6 \).

9 tháng 9 2017

+ 2x2 + y2 – 8x + 2y – 1 = 0 không phải phương trình đường tròn vì hệ số của x2 khác hệ số của y2.

+ Phương trình x2 + y2 + 2x – 4y – 4 = 0 có :

a = –1; b = 2; c = –4 ⇒ a2 + b2 – c = 9 > 0

⇒ phương trình trên là phương trình đường tròn.

+ Phương trình x2 + y2 – 2x – 6y + 20 = 0 có :

a = 1; b = 3; c = 20 ⇒ a2 + b2 – c = –10 < 0

⇒ phương trình trên không là phương trình đường tròn.

+ Phương trình x2 + y2 + 6x + 2y + 10 = 0 có :

a = –3; b = –1; c = 10 ⇒ a2 + b2 – c = 0 = 0

⇒ phương trình trên không là phương trình đường tròn.

6 tháng 5 2018

Đáp án D

- Ta có :

(C1) tâm I1(0;2) và R1= 3; (C2) tâm I2( 3;-4) và R2= 3

- Nhận xét :  không cắt C2

- Gọi d: ax+ by+ c= 0  là tiếp tuyến chung , thế thì : d(I1; d) = R1 và d (I2; d) = R2

- Trường hợp: a= 2b thay vào (1):

- Do đó ta có hai đường thẳng cần tìm :

- Trường hợp :  thay vào  :  

-Có 2 đường thẳng : d3: 2x- 1 = 0 và d4: 6x + 8y -1= 0.

Có tất cả 4 tiếp tuyến chung.

10 tháng 4 2018

a) x2 + y2 – 4x + 8y – 5 = 0

⇔ (x2 – 4x + 4) + (y2 + 8y + 16) = 25

⇔ (x – 2)2 + (y + 4)2 = 25.

Vậy (C) có tâm I(2 ; –4), bán kính R = 5.

b) Thay tọa độ điểm A vào phương trình đường tròn ta thấy:

(–1 – 2)2 + (0 + 4)2 = 32 + 4= 52= R2

⇒ A thuộc đường tròn (C)

⇒ tiếp tuyến (d’) cần tìm tiếp xúc với (C) tại A

⇒ (d’) là đường thẳng đi qua A và vuông góc với IA

⇒ (d’) nhận Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt và đi qua A(–1; 0)

⇒ phương trình (d’): 3(x + 1) – 4(y - 0)= 0 hay 3x – 4y + 3 = 0.

c) Gọi tiếp tuyến vuông góc với (d) : 3x – 4y + 5 = 0 cần tìm là (Δ).

(d) có Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt; 1 VTCP là ud(4; 3)

(Δ) ⊥ (d) ⇒ (Δ) nhận Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt

⇒ (Δ): 4x + 3y + c = 0.

(C) tiếp xúc với (Δ) ⇒ d(I; Δ) = R

Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10

Vậy (Δ) : 4x + 3y + 29 = 0 hoặc 4x + 3y – 21 = 0.

4 tháng 6 2019

Cách 1 : Xác định các hệ số a, b, c.

a) x2 + y2 – 2x – 2y – 2 = 0 có hệ số a = 1 ; b = 1 ; c = –2

⇒ tâm I (1; 1) và bán kính Giải bài 1 trang 83 SGK hình học 10 | Giải toán lớp 10

b) 16x2 + 16y2 + 16x – 8y –11 = 0

Giải bài 1 trang 83 SGK hình học 10 | Giải toán lớp 10

⇒ Đường tròn có tâm Giải bài 1 trang 83 SGK hình học 10 | Giải toán lớp 10 , bán kính Giải bài 1 trang 83 SGK hình học 10 | Giải toán lớp 10

c) x2 + y2 - 4x + 6y - 3 = 0

⇔ x2 + y2 - 2.2x - 2.(-3).y - 3 = 0

có hệ số a = 2, b = -3,c = -3

⇒ Đường tròn có tâm I(2 ; –3), bán kính Giải bài 1 trang 83 SGK hình học 10 | Giải toán lớp 10

Cách 2 : Đưa về phương trình chính tắc :

a) x2 + y2 - 2x - 2y - 2 = 0

⇔ (x2 - 2x + 1) + (y2 - 2y +1) = 4

⇔(x-1)2 + (y-1)2 = 4

Vậy đường tròn có tâm I(1 ; 1) và bán kính R = 2.

b) 16x2 + 16y2 + 16x - 8y - 11 = 0

Giải bài 1 trang 83 SGK hình học 10 | Giải toán lớp 10

Vậy đường tròn có tâm Giải bài 1 trang 83 SGK hình học 10 | Giải toán lớp 10 và bán kính R = 1.

c) x2 + y2 - 4x + 6y -3 = 0

⇔ (x2 - 4x + 4) + (y2 + 6y + 9) = 4 + 9 + 3

⇔ (x - 2)2 + (y + 3)2 = 16

Vậy đường tròn có tâm I( 2 ; –3) và bán kính R = 4.

23 tháng 11 2018

Áp dụng công thức ta có tâm  I(- 1; 4)

Bán kính   R ​ =    ( − 1 ) 2 + 4 2 − 8 = 3 .

 Đáp án C.

Chú ý: Khi học sinh không nhớ công thức của tâm và bán kính thì cần biến đổi phương trình đường tròn ở dạng tổng quát về dạng chính tắc

x 2 + y 2 + 2 x − 8 y + 8 = 0 ⇔ x + 1 2 + y − 4 2 = 9

Từ đó có thông tin về tâm và bán kính của đường tròn.

Các phương án A, B, D là các sai lầm thường gặp của học sinh.

16 tháng 6 2017

Ta xét các phương án:

(I) có: 

(II) có:

(III) tương đương : x2+ y2 – 2x - 3y + 0,5= 0.

phương trình này có:

Vậy chỉ (I) và (III) là phương trình đường tròn.

Chọn D.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Đây không phải là dạng của phương trình đường tròn (hệ số \({y^2}\) bằng -1).

b) Vì \({a^2} + {b^2} - c = {1^2} + {\left( { - 2} \right)^2} - 6 < 0\) nên phương trình đã cho không là phương trình tròn.

c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {2^2} - 1 = 11 > 0\) nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;2} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c}  = \sqrt {11} \).

17 tháng 7 2017

Phương trình của (C) là  x 2 + y 2 − 6 x + 4 y − 12 = 0   ⇔ x − 3 2 + y + 2 2 = 25

Đường tròn này có tâm I(3; -2) và bán kính R = 5.

Ta có tiếp tuyến tại A(-1; 1):  đi qua A, nhận A I →    ( 4 ;    − 3 )  làm VTPT nên có phương trình:

4(x +1) – 3 (y -1 ) = 0 hay 4x – 3y + 7 = 0  ó  - 4x + 3y -  7 = 0

Đáp án A

12 tháng 4 2019

Tọa độ giao điểm là nghiệm của hệ phương trình

x 2 + ​ y 2 − 6 x − 4 y + ​ 9 = 0 x 2 + ​ y 2 − 2 x − 8 y + ​ 13 = 0 ⇔ x 2 + ​ y 2 − 6 x − 4 y + ​ 9 = 0 − 4 x + ​ 4 y     − 4 = 0 ⇔ x 2 + ​ y 2 − 6 x − 4 y + ​ 9 = 0       ( 1 ) ​ x − y    + ​ 1 = 0                                     ( 2 ) ​

Từ (2) suy ra:  y = x+ 1 thay  vào (1) ta được:

  x 2 +   ( x +   1 ) 2     -   6 x   –   4 ( x +   1 )   +   9     =   0     x 2   +   x 2     +   2 x   +   1   -     6 x   -     4 x   –   4 +   9   = 0

2 x 2   –   8 x   +   6   =   0  

Vậy 2 đường tròn đã cho cắt  nhau tại 2 điểm là (1; 2) và (3;4).

ĐÁP ÁN B