K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ví dụ 

a là 1 

b là 2

ta có 

 1/1 - 1/2 và 1/1x2

= 1/2 và 1/2 

khi đó ta thấy 1/2 = 1/2 

và  1/1 - 1/2 = 1/1x2

11 tháng 8 2021

giúp mik với ạ

Mình không chắc đã đúng đâu nhưng mình cứ giair thử nhé ! 

Ta có : 

A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)+ ... + \(\frac{1}{99}-\frac{1}{100}\)

\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)

\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)

\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)x 2 

\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)= B 

Vậy , A = B 

~ Chúc bạn học giỏi ! ~

AH
Akai Haruma
Giáo viên
30 tháng 6

Lời giải:

$\frac{1}{a}+\frac{1}{b}+\frac{1}{a\times b}+a+b=a\times b$

$\frac{a+b}{a\times b}+(a+b)+\frac{1}{a\times b}+1=a\times b+1$

$(a+b)\times (\frac{1}{a\times b}+1)+(\frac{1}{a\times b}+1)=a\times b+1$

$(\frac{1}{a\times b}+1)\times (a+b+1)=a\times b+1$

$\frac{(a\times b+1)\times (a+b+1)}{a\times b}=a\times b+1$

$(a\times b+1)\times (\frac{a+b+1}{a\times b}-1)=0$

$\Rightarrow a\times b+1=0$ hoặc $\frac{a+b+1}{a\times b}=1$

Hiển nhiên $a\times b+1>0$ với $a,b$ là số tự nhiên.

$\Rightarrow \frac{a+b+1}{a\times b}=1$

$\Rightarrow a+b+1=a\times b$

$a\times b-a-b=1$

$a\times (b-1)-(b-1)=2$

$(b-1)\times (a-1)=2=1\times 2=2\times 1$

TH1: 

$a-1=2, b-1=1\Rightarrow a=3; b=2$

TH2: 

$a-1=1, b-1=2\Rightarrow a=2; b=3$

26 tháng 1 2017

Mik c thôi

26 tháng 1 2017

A = 1 / 1008 + 1 / 2013 - 1 / 2016 x 2017

A = 1 / 1008 + 1 / 2013 - 1 / 2016 x 1 / 2017

B = 1 / 2014 + 1 / 2016 + 1 / 2017 + 1 / 2014 x 2016

B = 1 / 2014 + 1 / 2016 + 1 / 2017 + 1 / 2014 x 1 / 2016

18 tháng 10 2018

a, \(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{2011\cdot2011}\)

có :

\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{2011\cdot2011}< \frac{1}{2010\cdot2011}\)

nên :

\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2010\cdot2011}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(\Rightarrow A< 1-\frac{1}{2011}\)

\(\Rightarrow A< \frac{2010}{2011}< 1\)

b, \(A=\frac{2010}{2011}=1-\frac{1}{2011}\) 

\(\frac{3}{4}=1-\frac{1}{4}\)

\(\frac{1}{4}>\frac{1}{2011}\)

nên :

\(A>\frac{3}{4}\)

19 tháng 3 2020

a, A bé hơn 1

b, A bé hơn 3/4

25 tháng 9 2021

help me!!!

17 tháng 5 2021

                                                                     \(Giải\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}\)\(+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2014}\)

      \(A=0+0+0+...+0+0\)

      \(\Rightarrow A=0\)   

\(a.\)\(A< 1\)

b.   \(A< \frac{3}{4}\)

3 tháng 3 2018

A=1011-1/1012-1<1

=>A=1011-1/1012-1<1011+1.10/1012+1.10

                             =1011+10/1012+10

                             =10(1010+1)/10(1011+1)

                             =1010+1/1011+1=B

=>A<B