Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: \(u_2=2\cdot1+3=5;u_3=2\cdot5+3=13;u_4=2\cdot13+3=29;\)
\(u_5=2\cdot29+3=61\)
b: \(u_2=u_1+2^2\)
\(u_3=u_2+2^3\)
\(u_4=u_3+2^4\)
\(u_5=u_4+2^5\)
Do đó: \(u_n=u_{n-1}+2^n\)
Bạn tham khảo câu trả lời của anh Lâm
https://hoc24.vn/cau-hoi/.334447965337
Đặt \(u_n+\dfrac{5}{4}=v_n\)
\(GT\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{9}{4};v_2=\dfrac{13}{4}\\v_{n+2}=2v_{n+1}+3v_n\end{matrix}\right.\)
Ta có CTTQ của dãy \(\left(v_n\right)\) là:
\(v_n=\dfrac{11}{24}.3^n-\dfrac{7}{8}.\left(-1\right)^n\)
(Bạn tự chứng minh theo quy nạp)
\(\Rightarrow u_n=\dfrac{11}{24}.3^n-\dfrac{7}{8}\left(-1\right)^n-\dfrac{5}{4}\) với \(\forall n\in N\text{*}\)
\(\Rightarrow S=2\left(u_1+u_2+...+u_{100}\right)+u_{101}\)
\(=\left[\dfrac{11}{12}\left(3^1+3^2+...+3^{100}\right)-\dfrac{7}{4}\left(-1+1-...+1\right)-\dfrac{5}{2}.100\right]+\dfrac{11}{24}.3^{101}-\dfrac{7}{8}.\left(-1\right)^{101}-\dfrac{5}{4}\)
\(=\dfrac{11}{12}.\dfrac{3^{101}-3}{2}-250+\dfrac{11}{24}.3^{101}+\dfrac{7}{8}\)
\(=\dfrac{11}{24}.\left(2.3^{101}-3\right)-\dfrac{1993}{8}\)
\(=\dfrac{11}{4}.3^{100}-\dfrac{501}{2}\)
\(u_3=u_1-u_2=6\)
\(u_4=u_2-u_3=3\)
\(u_5=u_3-u_4=3\)