K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

hello các bạn

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)     \(y' = \left( {{x^3} - 3{x^2} + 4} \right)' = 3{x^2} - 6x\), \(y'\left( 2 \right) = {3.2^2} - 6.2 = 0\)

Thay \({x_0} = 2\) vào phương trình \(y = {x^3} - 3{x^2} + 4\) ta được: \(y = {2^3} - {3.2^2} + 4 = 0\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 0.(x - 2) + 0 = 0\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là y = 0

b)    \(y' = \left( {\ln x} \right)' = \frac{1}{x}\), \(y'(e) = \frac{1}{e}\)

Thay \({x_0} = e\) vào phương trình \(y = \ln x\) ta được: \(y = \ln e = 1\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = \frac{1}{e}.\left( {x - e} \right) + 1 = \frac{1}{e}x - 1 + 1 = \frac{1}{e}x\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = \frac{1}{e}x\)

c)     \(y' = \left( {{e^x}} \right)' = {e^x},\,\,y'(0) = {e^0} = 1\)

Thay \({x_0} = 0\) vào phương trình \(y = {e^x}\) ta được: \(y = {e^0} = 1\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 1.\left( {x - 0} \right) + 1 = x + 1\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = x + 1\)

NV
16 tháng 7 2021

\(y'=3x^2-6x\)

Do M thuộc (C) nên hệ số góc của tiếp tuyến tại M:

\(k=f\left(a\right)=3a^2-6a\)

\(f'\left(a\right)=6a-6>0;\forall a\in\left[2;3\right]\)

\(\Rightarrow f\left(a\right)\) đồng biến trên \(\left[2;3\right]\Rightarrow k_{max}\) khi \(a=3\)

\(\Rightarrow b=a^3-3a^2-1=-1\)

\(S=3-1=2\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

a, Hệ số góc của tiếp tuyến của đồ thị là:

\(y'\left(2\right)=-4\cdot2+1=-7\)

b, Phương trình tiếp tuyến của đồ thị (C) tại điểm M(2;-6) là:

\(y=y'\left(2\right)\cdot\left(x-2\right)-6=-7\left(x-2\right)-6=-7x+8\)

24 tháng 12 2017

Chọn C

\(y'=\left(x^3-3x^2+4x-1\right)'=3x^2-3\cdot2x+4\)

\(=3x^2-6x+3+1=3\left(x-1\right)^2+1>=1\)

Dấu = xảy ra khi x=1

=>Chọn A

x^2+(y-1)^2=4

=>R=2 và I(0;1)

A(1;1-m) thuộc (C)

y'=4x^3-4mx

=>y'(1)=4-4m

PT Δsẽ là y=(4-m)(x-1)+1-m

Δ luôn đi qua F(3/4;0) và điểm F nằm trong (λ)

Giả sử (Δ) cắt (λ) tại M,N

\(MN=2\sqrt{R^2-d^2\left(I;\Delta\right)}=2\sqrt{4-d^2\left(I;\Delta\right)}\)

MN min khi d(I;(Δ)) max

=>d(I;(Δ))=IF 

=>Δ vuông góc IF

Khi đó, Δ có 1 vecto chỉ phương là: vecto u vuông góc với vecto IF=(3/4;p-1)

=>vecto u=(1;4-4m)

=>1*3/4-(4-4m)=0

=>m=13/16

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Ta có: \(y'=3x^2+6x\Rightarrow\left\{{}\begin{matrix}y'\left(1\right)=9\\y\left(1\right)=3\end{matrix}\right.\)

Phương trình tiếp tuyến là: \(y=9\left(x-1\right)+3=9x-6\)