K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
4 tháng 10 2021

Bài 5*: 

\(E\inℤ\Rightarrow2E=\frac{2x+2}{2x+1}=\frac{2x+1+1}{2x+1}=1+\frac{1}{2x+1}\inℤ\Leftrightarrow\frac{1}{2x+1}\inℤ\)

mà \(x\inℤ\Leftrightarrow2x+1\inƯ\left(1\right)=\left\{-1,1\right\}\)

\(\Leftrightarrow x\in\left\{-1,0\right\}\).

Thử lại đều thỏa mãn. 

DD
4 tháng 10 2021

Bài 1: 

\(A=\frac{x+15}{x-2}=\frac{x-2+17}{x-2}=1+\frac{17}{x-2}\inℤ\Leftrightarrow\frac{17}{x-2}\inℤ\)

mà \(x\)là số nguyên nên \(x-2\inƯ\left(17\right)=\left\{-17,-1,1,17\right\}\)

\(\Leftrightarrow x\in\left\{-15,1,3,19\right\}\).

Bài 2, 3, 4: Tương tự. 

kangta@.com

a: M(x)+N(x)=7x^3-8x^2-13x-7

b: M(x)+Q(x)=12x^3-2x^2-5x-20

c: N(x)+Q(x)=13x^3-22x-9

d: N(x)-Q(x)=-5x^3-6x^2-8x+13

e: Q(x)-M(x)=6x^3+8x^2-9x-2

21 tháng 1 2018

\(x=1\)

22 tháng 1 2018

Giải chi tiết giùm mk với

27 tháng 7 2023

A = 3 + 32 + 33 +...+ 32015

A =  (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)

A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )

A = 3.211 +...+ 32011.121

A = 121.( 3 +...+ 32021)

121 ⋮ 121 ⇒ A =  121 .( 3 +...+32021)  ⋮ 121 (đpcm)

b, A              = 3 + 32 + 33 + 34 +...+ 32015

   3A             =       32 + 33 + 34 +...+ 32015 + 32016

3A - A           =   32016 - 3

    2A            = 32016 - 3

      2A    + 3  = 32016 -  3 + 3

      2A    + 3 =  32016 = 27n

       27n = 32016

       (33)n = 32016

        33n = 32016 

           3n =  2016

             n = 2016 : 3

             n = 672

c, A = 3 + 32 + ...+ 32015

    A = 3.( 1 + 3 +...+ 32014)

    3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3

   Mặt khác ta có: A = 3 + 32 +...+ 32015 

                             A =  3 + (32 +...+ 32015)

                             A = 3 + 32.( 1 +...+ 32015)

                             A = 3 + 9.(1 +...+ 32015)

                              9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9 

                                            3 không chia hết cho 9 nên 

                                A không chia hết cho 9, mà A lại chia hết cho 3 

                        Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9

    

 

 

      

4 tháng 12 2019

a^2+b^2/a^2+c^2=b^2/c^2=b^2/ab=b/a

Bạn ơi , bạn xem lại đề nhé! Mình làm thế này không biết có đúng đề không nữa?

Ta có \(a^2+c^2\ge0\)  (gt)  mà \(a^2\ge0 \forall a, c^2\ge0 \forall c\)=> \(a\ne0 , c\ne0\)=> \(b\ne0\)( vì \(ab=c^2\))

Với \(a,b,c \ne0\),  \(ab=c^2\)=> \(\frac{a}{c}=\frac{c}{b}\)

                                                      => \(\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2\)

                                                       => \(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)   mà \(\frac{a}{c}=\frac{c}{b}\)

                                                     => \(\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)

30 tháng 9 2021

BÀI ĐÂY NHA MỌI NGƯỜI 

undefined

8 tháng 10 2021

Bạn có thể kết bạn với mình ko?

4 tháng 12 2021

a) Xét tam giác ABE và tam giác ACE có:

+ AE chung.

+ AB = AC (gt).

+ BE = CE (E là trung điểm của BC).

=> Tam giác ABE = Tam giác ACE (c - c - c).

b) Xét tam giác ABC có: AB = AC (gt).

=> Tam giác ABC cân tại A.

Mà AE là đường trung tuyến (E là trung điểm của BC).

=> AE là phân giác ^BAC (Tính chất các đường trong tam giác cân).

c) Xét tam giác ABC cân tại A có: 

AE là phân giác ^BAC (cmt).

=> AE là đường cao (Tính chất các đường trong tam giác cân).

=> AE \(\perp\) BC.

Xét tam giác BIE và tam giác CIE:

+ IE chung.

+ BE = CE (E là trung điểm của BC).

+ ^BEI = ^CEI ( = 90o).

=> Tam giác BIE = Tam giác CIE (c - g - c).