K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\frac{1}{3}-\frac{3}{5}+\frac{5}{7}-\frac{7}{9}+\frac{9}{11}-\frac{11}{13}+\frac{13}{5}+\frac{11}{13}-\frac{9}{11}+\frac{7}{9}-\frac{5}{7}+\frac{3}{5}-\frac{1}{3}\)

=\(\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{5}{7}-\frac{5}{7}\right)+\left(\frac{7}{9}-\frac{7}{9}\right)+\left(\frac{11}{13}-\frac{11}{13}\right)+\frac{13}{5}\)

=\(\frac{0}{3}+\frac{0}{7}+\frac{0}{9}+\frac{0}{13}+\frac{13}{15}\)

=\(0+0+0+0+\frac{13}{5}\)

=\(\frac{13}{5}\)

1 tháng 10 2018

\(\frac{1}{3}-\frac{3}{5}+\frac{5}{7}-\frac{7}{9}+\frac{9}{11}-\frac{11}{13}+\frac{13}{5}+\frac{11}{13}-\frac{9}{11}+\frac{7}{9}-\frac{5}{7}+\frac{3}{5}-\frac{1}{3}\)

\(=\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{-3}{5}+\frac{3}{5}\right)+\left(\frac{5}{7}-\frac{5}{7}\right)+\left(\frac{-7}{9}+\frac{7}{9}\right)+\left(\frac{-11}{13}+\frac{11}{13}\right)+\frac{13}{5}\)

\(=0+0+0+0+0+\frac{13}{5}\)

\(=\frac{13}{5}\)

Chúc bạn học tốt !

31 tháng 8 2016

C = 1/100 - ( 1/2.1 + 1/3.2 + ... + 1/98.97 + 1/99.98 + 1/100.99

C = 1/100 - (  1- 1/2+ 1/2 - 1/3 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100 )

C = 1/100 - ( 1 - 1/100 )

C = 1/100 - 99/100

C = \(\frac{-49}{50}\)

19 tháng 8 2016

\(=\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{3}{7}-\frac{3}{7}\right)+\left(\frac{5}{9}-\frac{5}{9}\right)+\left(\frac{2}{11}-\frac{2}{11}\right)+\left(\frac{7}{13}-\frac{7}{13}\right)+\frac{9}{16}\)

= 0 + \(\frac{9}{16}\)

\(\frac{9}{16}\)

tick nha bn

19 tháng 8 2016

\(B=\frac{1}{5}-\frac{3}{7}+\frac{5}{9}-\frac{2}{11}+\frac{7}{13}-\frac{9}{16}-\frac{7}{13}+\frac{2}{11}-\frac{5}{9}+\frac{3}{7}-\frac{1}{5}\)

    \(=\left(\frac{1}{5}-\frac{1}{5}\right)+\left(-\frac{3}{7}+\frac{3}{7}\right)+\left(\frac{5}{9}-\frac{5}{9}\right)+\left(-\frac{2}{11}+\frac{2}{11}\right)+\left(\frac{7}{13}-\frac{7}{13}\right)-\frac{9}{16}\)

    \(=0+0+0+0+0-\frac{9}{16}\)

    \(=-\frac{9}{16}\)

hihi ^...^ vui ^_^

 

 

24 tháng 10 2016

Bài 1:
Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

4 tháng 11 2019

Có phải ở sách NCPT ko bn