Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: AE+EM=MP+PD
nên AM=MD
hay M là trung điểm của AD
Ta có: BF+FN=NQ+QC
nên BN=CN
hay N là trung điểm của BC
Trên tia đối của PB lấy H sao cho BP = PH
ΔBPC và ΔHPD có:
BP = HP (cách vẽ)
\(\widehat{BPC}=\widehat{HPD}\left(đối.đỉnh\right)\) (đối đỉnh)
PC = PD (gt)
Do đó, ΔBPC=ΔHPD(c.g.c)
=> BC = DH (2 cạnh t/ứng)
và \(\widehat{PBC}=\widehat{PHD}\) (2 góc t/ứ), mà 2 góc này ở vị trí so le trong nên BC // HD
ΔABH có: M là trung điểm của AB (gt)
P là trung điểm của BH (vì HP = BP)
Do đó MP là đường trung bình của ΔABH
\(\Rightarrow MP=\dfrac{1}{2}AH\) ; MP // AH
\(\Rightarrow2MP=AH\)
Có: \(AD+DH\ge AH\) (quan hệ giữa 3 điểm bất kì)
\(\Leftrightarrow AD+BC\ge2MP\) (thay \(DH=BC;AH=2MP\))
\(\Leftrightarrow\dfrac{AD+BC}{2}\ge MP\)
Mà theo đề bài: \(MP=\dfrac{BC+AD}{2}\)
Do đó, \(AD+DH=AH\)
=> A,D,H thẳng hàng
Mà HD // BC (cmt) nên AD // BC
Tương tự: AB // CD
Tứ giác ABCD có: AD // BC (cmt);AB // CD (cmt)
Do đó, ABCD là hình bình hành
Gọi K là giao điểm của MP và NQ
Kẽ MH, QE lần lược vuông góc với DC, BC tại H,E. I, F là giao điểm của QE với MP và MH
Ta có QE //DC
=> MIQ = MPH (góc đồng vị)
MIQ = QNE ( + NQE = 90)
=> MPH = QNE (1)
Xét tam giác QNE và tam giác MPH có
Góc MPH = góc QNE
Góc MHP = góc QEN = 90
MH = QE (cùng bằng cạnh hình vuông)
=> Tam giác QNE = tam giác MPH
=> NQ = PM