Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDE có
AB//DE
AE//BD
=>ABDE là hbh
=>AB=DE=5cm và BD=AE=12cm
EC=5+15=20cm
EC^2=AE^2+AC^2
=>ΔAEC vuông tại A
b: Kẻ AH vuông góc EC tại H
=>AH=15*20/25=300/25=12cm
S ABCD=1/2*AH*(AB+CD)
=1/2*12*(5+15)=20*6=120cm2
Gọi H là giao điểm của AC và BD
Vì AF//BC
Áp dụng hệ quả Talet :
=> HF/HB = AH/HC
Ta có : HE//HA = HB/HD
Mà AB//CD
=> HB/HA = HA/HC
=> HE /HA = HF/HB
=> EF//AB
=> EDCF là hình thang
Vì ABCD là hình thang cân
=> ADC = BCD
AD = BC
Xét ∆ACD và ∆BDC ta có :
DC chung
AD = BC
ADC = BCD
=> ∆ACD = ∆BDC (c.g.c)
=> BDC = ACD
=> EDCF là hình thang cân (dpcm)
b) Kéo dài EF sao cho lần lượt cắt AD tại G và BC tại O
Vì EF//DC (cmt)
=> GO//DC
Mà DC//AB
=> AB//GO//DC
=> GO là đường trung bình hình thang ABCD
=> GO = \(\frac{5\:+\:10}{2}=\:7,5\)cm
Mà GO là đường trung bình hình thang
=> G là trung điểm AD ; O là trung điểm BC
Vì GO//AB
=> GE//AB
Mà G là trung điểm AD
=> GE là đường trung bình ∆ABD
=> GE = \(\frac{5}{2}\)= 3,5 cm
Vì GO //AB
=> FO//AB
Mà O là trung điểm BC
=> FO là đường trung bình ∆ABC
=> FO = \(\frac{5}{2}=\:3,5\)cm
=> EF = 7,5 - 3,5 - 3,5 = 0,5cm