K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔMNQ và ΔNMP có

MN chung

NQ=MP

MQ=NP

=>ΔMNQ=ΔNMP

=>góc OMN=góc ONM

=>OM=ON 

OM+OP=MP

ON+OQ=NQ

mà MP=NQ và OM=ON

nên OP=OQ

28 tháng 12 2017

( hình tự vẽ)

a) xét tam giác AMO và tam giác AQO:

AO: cạnh chung

DAO = BAO

=> tam giác AQO= tam giác AMO ( ch-gn)

=> OM = OQ(1)

cm tương tự, xét tam giác MOB và tam giác NOB, tam giác QOD và tam giác POD.

=> OM=ON=OP=OQ

b) Ta có : OM vuông góc BA

OP vuông góc DC

Mà : AB//DC (ABCD là hình thoi )

=> M,O,P thẳng hàng

có thể cm rằng AMCP là hình bình hành cũng được

c) Ta có OM=ON=OP=OQ

M,O,P thẳng hàng (cmt)

Q,O,N thẳng hàng ( tự cm như cách trên )

=> MNPQ là hình chữ nhật

d) Ta có AQ=AM ( tam giác AQO=tam giác AMO)

Mà QAM =90* ( ABCD laqf hình vuông)

=> AQM =45*

AQM +OQM = 90*

=>OQM = 45*

Mà OQ=OM (cmt)

=> QOM = 90*

Mà MNPQ là hcn

=> MNPQ là hình vuông

20 tháng 5 2017
  1. a)xét tg MOQ và tg NOP có: -góc Ở chung; OM=ON(giả thiết);OQ=OP(giả thiết)=>tg MOQ=tgNOP(cạnh.góc cạnh)
  2. b) ta có:QP (cạnh chung);MQ=NP(giả thiết);góc M=góc N(tg MOQ=tgNOP)=>tg MPQ=tg NQP
20 tháng 5 2017
  1. c) MN//PQ( vị trí so le trong)

d) vì MN//PQ(cmt)=>MNPQ là ht cân

Chọn B

6 tháng 2 2021

Ta có: MN // AB (gt); AB // CD(gt) => MN // AB // CD

Xét tam giác ABC có: OM // AB (MN // AB)

 =>  \(\dfrac{OM}{AB}=\dfrac{CM}{CA}\) (hệ quả định lý Ta lét trong tam giác) (1)

Xét tam giác ABD có: ON // AB (MN // AB)

=>   \(\dfrac{ON}{AB}=\dfrac{DN}{DB}\) (hệ quả định lý Ta lét trong tam giác) (2)

Xét hình thang ABCD có: MN // AB // CD (cmt)

 => \(\dfrac{CM}{CA}=\dfrac{DN}{DB}\) (định lý Ta lét trong hình thang) (3)

Từ (1) (2) (3) => OM = ON

5 tháng 12 2017

Trong ΔDAB, ta có: OM // AB (gt)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét) (1)

Trong ΔCAB, ta có: ON // AB (gt)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét) (2)

Trong ΔBCD, ta có: ON // CD (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí Ta-lét) (3)

Từ (1), (2) và (3) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy: OM = ON