Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB<AC
=>góc B>góc C
góc ADB=góc DAC+góc ACD
góc ADC=góc BAD+góc ABD
mà góc ACD<góc ABD; góc BAD=góc CAD
nên góc ADB<góc ADC
b: Xét ΔABE có
AD vừa là đường cao, vừa là phân giác
=>ΔABE cân tại A
c: AD là phân giác
=>BD/AB=CD/AC
mà AB<AC
nên BD<CD
a: Xét ΔADK và ΔACK có
AD=AC
góc DAK=góc CAK
AK chung
=>ΔADK=ΔACK
=>DK=CK
b: ΔADC cân tại A
mà AM là phân giác
nên AM vuông góc DC
=>AM//HB
Phần a vì cạnh bd=dc nên ad.bd=ad.ac
mà ab=ac
nên adb=adc
Phần b vì adb=adc[phần a]
nên ad là phân giác của bac
Phần c chưa ra
+) Xét tam giác ADB và ADC có: AB = AC; chung cạnh AD; BD = DC (do D là trung điểm của BC)
=> tam giác ADB = tam giác ADC (c - c- c)
=> góc BAD = CAD ( 2 góc tương ứng)
=> AD là p/g của góc BAC
+) góc ADB = ADC ( 2 góc tương ứng)
Mà góc ADB + ADC = 180o (2 góc kề bù) nên 2.góc ADC = 180o => góc ADC = 90o => AD | DC
Vậy...
Xét ΔBAD và ΔCAD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔBAD=ΔCAD
Suy ra: BD=CD