K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

Đặt \(S=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow S< 1-\frac{1}{100}< 1\Rightarrow S< 1\)

Làm vui đó chủ yếu là nghe link gửi

23 tháng 9 2018

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}< 1\)

\(A< 1\left(đpcm\right)\)

22 tháng 9 2018

uh.cậu là fan của bts hả.mình cũng thế,nhưng mình thích red velvet hơn

22 tháng 9 2018

Biến đổi VT ta có :

 \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=VP\)

\(\Rightarrowđpcm\)

                  

26 tháng 2 2022

54/31 : 12/64 - 8 = 40/31

k nhé:))

26 tháng 2 2022

\(=\frac{40}{31}\)

25 tháng 7 2016

1/1+2  +  1/+1+2+3  +  ...  + 1/1+2+3+...+2014

= 1/(1+2).2:2  +  1/(1+3).3:2  +   ...  + 1/(1 + 2014).2014:2

= 2/2.3  +  2/3.4  +  ...  + 2/2014.2015

= 2.(1/2.3  +  1/3.4  +  ...  + 1/2014.2015)

= 2.(1/2  -  1/3  +  1/3  -  1/4  +  ... + 1/2014  -  1/2015)

= 2.(1/2 - 1/2015)

= 2.1/2 - 2.1/2015

= 1 - 2/2015

= 2013/2015

26 tháng 7 2016

1/1+2  +  1/+1+2+3  +  ...  + 1/1+2+3+...+2014

= 1/(1+2).2:2  +  1/(1+3).3:2  +   ...  + 1/(1 + 2014).2014:2

= 2/2.3  +  2/3.4  +  ...  + 2/2014.2015

= 2.(1/2.3  +  1/3.4  +  ...  + 1/2014.2015)

= 2.(1/2  -  1/3  +  1/3  -  1/4  +  ... + 1/2014  -  1/2015)

= 2.(1/2 - 1/2015)

= 2.1/2 - 2.1/2015

= 1 - 2/2015

= 2013/2015

14 tháng 3 2020

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}\)

\(A=\frac{2^{100}-1}{2^{100}}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}\)

hok tốt!!

11 tháng 5 2019

Câu 2 sai đề, thử rồi

5 tháng 5 2019

1,\(\left(\frac{7}{2}-2x\right).\frac{4}{3}=\frac{22}{3}\)

\(x.\left(\frac{7}{2}-2\right)=\frac{22}{3}:\frac{4}{3}=\frac{22}{3}.\frac{3}{4}=\frac{11}{2}\)

\(x.\frac{3}{2}=\frac{11}{2}\)

\(x=\frac{11}{2}:\frac{3}{2}=\frac{11}{2}.\frac{2}{3}=\frac{11}{3}\)

5 tháng 4 2018

Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>0\)

=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>1\)             (1)

Ta lại có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

           < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

           < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

           < \(1-\frac{1}{100}< 1\)

      => \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)\(< 1+1\)

     => \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)\(< 2\)               (2)

Từ (1) và (2) => \(1< 1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 2\)

                  => \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)không là số tự nhiên

3 tháng 5 2019

\(\frac{ }{ }\)

3 tháng 5 2019

\(1)\frac{1}{2}x-\frac{3}{5}=\frac{-4}{5}\)

\(\Rightarrow\frac{1}{2}x=\frac{-4}{5}+\frac{3}{5}\)

\(\Rightarrow\frac{1}{2}x=\frac{-1}{5}\)

\(\Rightarrow x=\frac{-1}{5}:\frac{1}{2}=\frac{-1}{5}\cdot\frac{2}{1}=\frac{-2}{5}\)

\(\Leftrightarrow x=\frac{-2}{5}\)

\(2)3\frac{1}{5}-2\frac{1}{3}x=-1\frac{3}{5}+1\frac{7}{10}\)

\(\Rightarrow\frac{16}{5}-\frac{7}{3}x=-\frac{8}{5}+\frac{17}{10}\)

\(\Rightarrow\frac{7}{3}x=\frac{16}{5}-\frac{-8}{5}+\frac{17}{10}\)

\(\Rightarrow\frac{7}{3}x=\frac{16}{5}+\frac{8}{5}+\frac{17}{10}\)

\(\Rightarrow\frac{7}{3}x=\frac{24}{5}+\frac{17}{10}\)

\(\Rightarrow\frac{7}{3}x=\frac{48}{10}+\frac{17}{10}\)

Đến đây tìm được rồi nhé

3,4, áp dụng bài 1,2 rồi làm :v