K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

tận cùng là 4

4 tháng 4 2017

"toi" don't know

11 tháng 6 2021

`A=(x^2-2)(x^2+x-1)-x(x^3+x^2-3x-2)`

`=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x`

`=(x^4-x^4)+(x^3-x^3)+(3x^2-x^2-2x^2)+(2x-2x)+2`

`=2`

11 tháng 6 2021

sai dấu bước 2 rồi kìa bạn ơi

17 tháng 3 2021

A=4x111...11 (2n chữ số 1) mà \(111...11=\frac{10^{2n}-1}{9}\Rightarrow A=4.\frac{10^{2n}-1}{9}\) 

Tương tự \(B=8.\frac{10^n-1}{9}\)

\(A+2B=4.\frac{10^{2n}-1}{9}+16.\frac{10^n-1}{9}=\frac{4.10^{2n}-4+16.10^n-16}{9}\)

Đề bài sai thì phải

7 tháng 10 2015

67+12-14=64

91-11-14=66

89-11-11=67

99-11-80=88

100-99-1=0

99-81-17

77-60-13=4

88-12-15=61

111-111=0

999-888=111

777-444=333

555-111=444

888-111=777

999-666=333

777-000=777

111-000=111

 

 

7 tháng 10 2015

ê cả tay

67+12-14= 65  

   91-11-14= 66  

  89-11-11=67

 99-11-80= 8 

   100-99-1= 0  

  99-81-11= 7   

     77-60-13= 4  

       88-12-15=61

111-111= 0            999-888=  111         777-444= 333                 555-111= 444             

 888-111= 777           999-666= 333            777-000=  777          111-000= 111

lần sau ra vưa vưa a bạn

16 tháng 8 2019

\(\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)\left(2abc+\Sigma a^2\left(b+c\right)\right)=\Sigma\frac{a\left(b+c\right)^2+\left(a^2+bc\right)\left(b+c\right)}{\left(b+c\right)^2}=\Sigma a+\Sigma\frac{a^2+bc}{b+c}\)

Mặt khác ta có :

\(\left(\Sigma\frac{a^2+bc}{b+c}\right)\left(\Sigma a\right)=\Sigma\frac{a^3+abc}{b+c}+\Sigma\left(a^2+bc\right)\)   ( nhân vào xong tách )

\(=\Sigma\frac{a^3+abc}{b+c}-\Sigma a^2+\Sigma\left(2a^2+bc\right)=\Sigma\frac{a\left(a-b\right)\left(a-c\right)}{b+c}+\Sigma\left(2a^2+bc\right)\)  ( * )

Theo BĐT Vornicu Schur chứng minh được  ( * ) không âm.

do đó : \(\Sigma\frac{a^2+bc}{b+c}\ge\frac{\Sigma\left(2a^2+bc\right)}{\Sigma a}\)

Theo đề bài , cần chứng minh : \(\left(\Sigma ab\right)\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)

Kết hợp với dòng đầu tiên t cần c/m :

\(\left(\Sigma ab\right)\left(\Sigma a+\frac{\Sigma\left(2a^2+bc\right)}{\Sigma a}\right)\ge\frac{9}{4}\left(2abc+\Sigma a^2\left(b+c\right)\right)\)

Quy đồng lên, ta được :

\(\Sigma a^3\left(b+c\right)\ge2\Sigma\left(ab\right)^2\Leftrightarrow\Sigma ab\left(a-b\right)^2\ge0\)

\(\Rightarrow\)đpcm

16 tháng 8 2019

Sử dụng dồn biến chứ k phải vậy

1 tháng 8 2015

>                                                

25 tháng 5 2022

a) \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\\\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{15}=\dfrac{z}{21}\end{matrix}\right.\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=2\Rightarrow x=2.10=20\\\dfrac{y}{15}=2\Rightarrow y=2.15=30\\\dfrac{z}{21}=2\Rightarrow z=2.21=42\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Dựa vào $a,b,c>0$ và $abc=1$ thì không tính được giá trị của biểu thức trên nhé em. Em chỉ có thể tính được giá trị nhỏ nhất của nó thôi.

17 tháng 3 2021

Thầy cho em hỏi có tính được giá trị lớn nhất không thầy, em cần giá trị lớn nhất là hạnh phúc rồi ạ.