K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

Số tự nhiên ko chia hết cho có dạng: 3k + 1 hoặc 3k + 2.

TH1 : Cả 3 số đều có dạng: 3k + 1.

Ta có: (3k + 1) + (3k+1) + (3k + 1) = (3k + 3k + 3k) + (1 + 1 + 1)

= 9k + 3 = 3k . 3 + 3.1

= 3(3k + 1) chia hết cho 3

=> TH1 ( Thỏa mãn )

TH2: Cả 3 số đều có dạng: 3k + 2.

Ta có:(3k + 2)+(3k + 2)+(3k + 2)=(3k + 3k + 3k) + (2 + 2 + 2)

= 9k + 6 = 3k.3 +3.2

= 3(3k + 2) chia hết cho 3

=> TH2 ( Thỏa mãn )

TH3: Trong 3 số tự nhiên ấy có 1 số có dạng 3k + 1 và 2 số còn lại có dạng 3k + 2.

Ta có: (3k+1) + (3k + 2) + (3k + 2) = (3k + 1 + 3k + 2) + (3k +2)

= (6k + 3) + 3k + 2

Vì 6k + 3 chia hết cho 3 => TH3( Thỏa mãn )

TH4 : Trong 3 stn ấy có 1 số có dạng 3k + 2 và 2 số còn lại có dạng 3k + 1.

Ta có: (3k + 2) + (3k + 1) + (3k + 1) = ( 3k + 2 + 3k + 1) + (3k + 1)

= ( 6k + 3 ) + ( 3k + 1)

Vì 6k + 3 chia hết cho 3 => TH4 ( Thỏa mãn )

Chúc bạn học tốt! ~ Viết mỏi cả taybucminhbucquagianroi

Hihi ko sao! ~ leuleuhiha

10 tháng 12 2017

thánh kìu ve ry mắc =)))

chờ mãi mà chả có ai trả lời làm đỡ ;(((

hihi,mơn nha

13 tháng 7 2017

a) Gọi các số tự nhiên đó là k, k + 1

+Nếu k chia hết cho 2 thì trong hai số đó k chia hết cho 2.

+Nếu k chia 2 dư 1 thì trong hai số đó k + 1 chia hết cho 2.

b) Gọi các số tự nhiên đó là k, k + 1, k + 2

+Nếu k chia hết cho 3 thì trong ba số đó k chia hết chi 3.

+Nếu k chia 3 dư 1 thì trong ba số đó k + 2 chia hết cho 3.

+Nếu k chia 3 dư 2 thì trong ba số đó k + 1 chia hết cho 3.

13 tháng 7 2017

a, Hai số tự nhiên liên tiếp là số thứ nhất có thể là số chẵn ,số thứ hai là số lẻ hoặc số thứ nhất là số lẻ, số thứ hai là số chẵn

b, Trung bình cộng của ba số tự nhiên liên tiếp là  chia cho 3 mà kết quả đó cũng là số thứ hai

22 tháng 11 2017

giúp mik vs

23 tháng 10 2014

số chia cho 3 có số dư là 1 trong các số:0,1,2,3(3 loại số dư)

có 4 số mà chỉ có 3 loại số dư nên có ít nhất 2 số  có cùng số dư khi chia cho 3 nên hiệu của 2 số đó phải chia hết cho 3

vậy ta đã chứng minh được bài toán

1. Gọi ba số tự nhiên liên tiếp là n , n + 1 và n + 2

=> Tổng của chúng là : n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3 ( đpcm )

2 . Trong 3 số tự nhiên liên tiếp có 1 trong 3 dạng 3k ; 3 + 1 ; 3k + 3

Vậy có 1 số chia hết cho 3 là 3k

23 tháng 12 2018

2, gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2

tổng của 3 số : a + ( a + 1 ) + ( a + 2 ) = 3a + 3 = 3( a.1 )  là 1 số chia hết cho 3 

vậy , tổng 3 số tự  nhiên liên tiếp chia hết cho 3

hok tốt#