Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>(x-2001)2\(\le\frac{49}{12}\approx4,08\)
=>(x-2001)2={0;1;4}
TH1: (x-2001)2=0
=>x=2001
=>y=7
TH2: (x-2001)2=1
\(\Rightarrow\hept{\begin{cases}x-2001=1\\x-2001=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=2002\\x=2000\end{cases}}\)
=>y2=37(loại)
TH3: (x-2001)2=4
\(\Rightarrow\hept{\begin{cases}x-2001=2\\x-2001=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=2003\\x=1999\end{cases}}\)
=>y2=1
=>y=1
Vậy (x;y)=(2001;7);(2003;1);(1999:1)
ta có: 49 - y2 = 12(x - 2001)2
=> \(12\left(x-2001\right)^2\le49\\ \Rightarrow\left(x-2001\right)^2\le\frac{49}{12}\approx4\)
mà (x - 2001)2 là số chính phương
=> \(\left(x-2001\right)^2=\left\{0;1;4\right\}\)
nếu (x - 2001)2 = 0
=> x - 2001 = 0 => x = 2001
=> 49 - y2 = 0 => y2 = 49 \(\Rightarrow\left[\begin{matrix}y=7\\y=-7\left(loại\right)\end{matrix}\right.\)
nếu (x - 2001)2 = 1
\(\left\{\begin{matrix}x-2001=1\\x-2001=-1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=2002\\x=2000\end{matrix}\right.\)
\(\Rightarrow49-y^2=12\Rightarrow y^2=37\left(loại\right)\)
nếu (x - 2001)2 = 4
\(\Rightarrow\left\{\begin{matrix}x-2001=2\\x-2001=-2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=2003\\x=1999\end{matrix}\right.\)
\(\Rightarrow49-y^2=12.4=48\Rightarrow y^2=1\Rightarrow\left\{\begin{matrix}y=1\\y=-1\left(loại\right)\end{matrix}\right.\)
vậy ta có các cặp (x;y) là (2001;7), (2003;1), (1999;1)
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.4^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.2^{2x}\)
\(\Rightarrow\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+1=2x\\y=x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\text{Vì y = x}\Rightarrow y=1\end{cases}}\)
Điều kiện đã cho \(\Leftrightarrow7\left(x-2019\right)^2+y^2=23\) (*)
Do \(\left(x-2019\right)^2,y^2\ge0\) nên (*) suy ra \(y^2\le23\Leftrightarrow y^2\in\left\{0,1,4,9,16\right\}\)
\(\Leftrightarrow y\in\left\{0,1,2,3,4\right\}\)
Hơn nữa, lại có \(y^2=23-7\left(x-2019\right)^2\). Ta thấy \(VP\) chia 7 dư 2.
\(\Rightarrow y^2\) chia 7 dư 2 \(\Rightarrow y\in\left\{3,4\right\}\)
Xét \(y=3\) \(\Rightarrow7\left(x-2019\right)^2=14\) \(\Leftrightarrow\left(x-2019\right)^2=2\), vô lí.
Xét \(y=4\Rightarrow7\left(x-2019\right)^2=7\) \(\Leftrightarrow\left(x-2019\right)^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=2018\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(4;2020\right),\left(4;2018\right)\right\}\) thỏa mãn ycbt.
\(\left(x-2016\right)^2\ge0\Rightarrow5-y^2\ge0\Rightarrow y^2\le5\Rightarrow y^2\in\left\{0,1,4\right\}\)
\(\Rightarrow5-y^2\in\left\{5,4,1\right\}\)Mà x,y là STN
\(\Rightarrow5-y^2=4\Rightarrow y^2=1\Rightarrow y=1\)
\(\Rightarrow\left(x-2016\right)^2=4\Rightarrow\orbr{\begin{cases}x-2016=2\\x-2016=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=2018\\x=2014\end{cases}}}\)
Vậy ...
Hiêu hai cp=5 chỉ có 4 &9
=>y=+-2; x-2016=+-3=>x=2019 hoac x=2013
(x-2012)^2=n
49-y^2=12.n {n <5}
y^2=49-12.n
với
n={0,1,4}
y^2={49,37,1}
y={+-7,+-1}
x-2012={0,+-2}
DS:
(x,y)=(0,+-7}; (2014,+-1);(2010,+-1}