Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Ta có:
\(\int (2-\cot ^2x)dx=\int (2-\frac{\cos ^2x}{\sin ^2x})dx\)
\(=\int (2-\frac{1-\sin ^2x}{\sin ^2x})dx=\int (3-\frac{1}{\sin ^2x})dx=3\int dx-\int \frac{dx}{\sin ^2x}\)
\(=3x+\int d(\cot x)=3x+\cot x+c\)
\(\Rightarrow \int ^{\frac{\pi}{2}}_{\frac{\pi}{3}}(2-\cot ^2x)dx=\left.\begin{matrix} \frac{\pi}{2}\\ \frac{\pi}{3}\end{matrix}\right|(3x+\cot x+c)=\frac{\pi}{2}-\frac{\sqrt{3}}{3}\)
3)
Xét \(\int (2\tan x-3\cot x)^2dx\)
\(=\int (4\tan ^2x+9\cot ^2x-12)dx\)
\(=\int (\frac{4\sin ^2x}{\cos ^2x}+\frac{9\cos ^2x}{\sin ^2x}-12)dx\)
\(=\int (\frac{4(1-\cos ^2x)}{\cos ^2x}+\frac{9(1-\sin ^2x)}{\sin ^2x}-12)dx\)
\(=\int (\frac{4}{\cos ^2x}+\frac{9}{\sin ^2x}-25)dx\)
\(=4\int d(\tan x)-9\int d(\cot x)-25\int dx\)
\(=4\tan x-9\cot x-25x+c\)
Do đó:
\(\int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}(2\tan x-3\cot x)^2dx=\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|(4\tan x-9\cot x-25x+c)=\frac{26\sqrt{3}}{3}-\frac{25\pi}{6}\)
2)
Xét \(\int (\tan x+\cot x)^2dx=\int (\tan ^2x+\cot ^2x+2)dx\)
\(=\int (\frac{\sin ^2x}{\cos^2 x}+\frac{\cos ^2x}{\sin ^2x}+2)dx\)
\(=\int (\frac{1-\cos ^2x}{\cos ^2x}+\frac{1-\sin ^2x}{\sin ^2x}+2)dx\)
\(=\int (\frac{1}{\cos ^2x}+\frac{1}{\sin ^2x})dx\)
\(=\int d(\tan x)-\int d(\cot x)=\tan x-\cot x+c\)
Do đó:
\(\int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}(\tan x+\cot x)^2dx=\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|(\tan x-\cot x+c)=2\sqrt{3}-\frac{2\sqrt{3}}{3}\)
a)
Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)
\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)
\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)
b)
\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)
\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)
c)
Có \(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).
Đặt \(x+1=t\)
\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)
\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)
\(\int\limits^{\dfrac{\pi}{4}}_{\dfrac{\pi}{8}}\dfrac{dx}{sin^2x.cos^2x}=\int\limits^{\dfrac{\pi}{4}}_{\dfrac{\pi}{8}}\dfrac{2d\left(2x\right)}{sin^22x}=-2cot2x|^{\dfrac{\pi}{4}}_{\dfrac{\pi}{8}}=...\)
\(\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\dfrac{cos2xdx}{sin^2x.cos^2x}=\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\dfrac{cos^2x-sin^2x}{sin^2x.cos^2x}dx=\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\left(\dfrac{1}{sin^2x}-\dfrac{1}{cos^2x}\right)dx=\left(-cotx-tanx\right)|^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\)
\(\int\limits^{\dfrac{\pi}{3}}_0\dfrac{cos3x}{cosx}dx=\int\limits^{\dfrac{\pi}{3}}_0\dfrac{4cos^3x-3cosx}{cosx}dx=\int\limits^{\dfrac{\pi}{3}}_0\left(4cos^2x-3\right)dx\)
\(=\int\limits^{\dfrac{\pi}{3}}_0\left(2cos2x-1\right)dx=\left(sin2x-x\right)|^{\dfrac{\pi}{3}}_0=...\)
\(I=\int\dfrac{x^3dx}{\left(x^8-4\right)^2}\)
Đặt \(x^4=t\Rightarrow x^3dx=\dfrac{1}{4}dt\Rightarrow I=\dfrac{1}{4}\int\dfrac{dt}{\left(t^2-2\right)^2}=\dfrac{1}{4}\int\dfrac{dt}{\left(t-\sqrt{2}\right)^2\left(t+\sqrt{2}\right)^2}\)
\(=\dfrac{1}{32}\int\left(\dfrac{1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}\right)^2dt=\dfrac{1}{32}\int\left(\dfrac{1}{\left(t-\sqrt{2}\right)^2}+\dfrac{1}{\left(t+\sqrt{2}\right)^2}-\dfrac{2}{\left(t+\sqrt{2}\right)\left(t-\sqrt{2}\right)}\right)dt\)
\(=\dfrac{1}{32}\int\left(\dfrac{1}{\left(t-\sqrt{2}\right)^2}+\dfrac{1}{\left(t+\sqrt{2}\right)^2}-\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}\right)\right)dt\)
\(=\dfrac{1}{32}\left(\dfrac{-1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}-\dfrac{1}{\sqrt{2}}ln\left|\dfrac{t-\sqrt{2}}{t+\sqrt{2}}\right|\right)+C\)
\(=\dfrac{1}{32}\left(\dfrac{-1}{x^4-\sqrt{2}}-\dfrac{1}{x^4+\sqrt{2}}-\dfrac{1}{\sqrt{2}}ln\left|\dfrac{x^4-\sqrt{2}}{x^4+\sqrt{2}}\right|\right)+C\)
2/ \(I=\int\dfrac{\left(2x+1\right)dx}{\left(x^2+x-1\right)\left(x^2+x+3\right)}=\dfrac{1}{4}\int\left(\dfrac{1}{x^2+x-1}-\dfrac{1}{x^2+x+3}\right)\left(2x+1\right)dx\)
\(=\dfrac{1}{4}\int\left(\dfrac{2x+1}{x^2+x-1}-\dfrac{2x+1}{x^2+x+3}\right)dx\)
\(=\dfrac{1}{4}\left(\int\dfrac{d\left(x^2+x-1\right)}{x^2+x-1}-\int\dfrac{d\left(x^2+x+3\right)}{x^2+x+3}\right)\)
\(=\dfrac{1}{4}ln\left|\dfrac{x^2+x-1}{x^2+x+3}\right|+C\)
3/ Đặt \(\sqrt[3]{x}=t\Rightarrow x=t^3\Rightarrow dx=3t^2dt\)
\(\Rightarrow I=\int\dfrac{3t^2.sint.dt}{t^2}=3\int sint.dt=-3cost+C=-3cos\left(\sqrt[3]{x}\right)+C\)
4/ \(I=\int\dfrac{dx}{1+cos^2x}=\int\dfrac{\dfrac{1}{cos^2x}dx}{\dfrac{1}{cos^2x}+1}\)
Đặt \(t=tanx\Rightarrow\left\{{}\begin{matrix}dt=\dfrac{1}{cos^2x}dx\\\dfrac{1}{cos^2x}=1+tan^2x=1+t^2\end{matrix}\right.\)
\(\Rightarrow I=\int\dfrac{dt}{1+t^2+1}=\int\dfrac{dt}{t^2+2}=\dfrac{1}{2}\int\dfrac{dt}{\left(\dfrac{t}{\sqrt{2}}\right)^2+1}\)
\(=\dfrac{1}{2}.\sqrt{2}.arctan\left(\dfrac{t}{\sqrt{2}}\right)+C=\dfrac{1}{\sqrt{2}}arctan\left(\dfrac{tanx}{\sqrt{2}}\right)+C\)
5/ \(I=\int\dfrac{sinx+cosx}{4+2sinx.cosx-sin^2x-cos^2x}dx=\int\dfrac{sinx+cosx}{4-\left(sinx-cosx\right)^2}dx\)
Đặt \(sinx-cosx=t\Rightarrow\left(cosx+sinx\right)dx=dt\)
\(\Rightarrow I=\int\dfrac{dt}{4-t^2}=-\int\dfrac{dt}{\left(t-2\right)\left(t+2\right)}=\dfrac{1}{4}\int\left(\dfrac{1}{t+2}-\dfrac{1}{t-2}\right)dt\)
\(=\dfrac{1}{4}ln\left|\dfrac{t+2}{t-2}\right|+C=\dfrac{1}{4}ln\left|\dfrac{sinx-cosx+2}{sinx-cosx-2}\right|+C\)
Ơ bài 1 nhầm số 4 thành số 2 rồi, bạn sửa lại 1 chút nhé :D
Còn 1 cách làm khác nữa là lượng giác hóa
Đặt \(x^4=2sint\Rightarrow x^3dx=\dfrac{1}{2}cost.dt\)
\(\Rightarrow I=\dfrac{1}{2}\int\dfrac{cost.dt}{\left(4sin^2t-4\right)^2}=\dfrac{1}{32}\int\dfrac{cost.dt}{cos^4t}=\dfrac{1}{32}\int\dfrac{dt}{cos^3t}\)
Đặt \(\left\{{}\begin{matrix}u=\dfrac{1}{cost}\\dv=\dfrac{dt}{cos^2t}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{sint.dt}{cos^2t}\\v=tant\end{matrix}\right.\)
\(\Rightarrow32I=\dfrac{tant}{cost}-\int\dfrac{tant.sint.dt}{cos^2t}=\dfrac{sint}{cos^2t}-\int\dfrac{sin^2t.dt}{cos^3t}\)
\(=\dfrac{sint}{1-sin^2t}-\int\dfrac{1-cos^2t}{cos^3t}dt=\dfrac{sint}{1-sin^2t}-\int\dfrac{dt}{cos^3t}+\int\dfrac{1}{cosx}dx\)
Chú ý rằng \(\int\dfrac{dt}{cos^3t}=32I\)
\(\Rightarrow32I=\dfrac{sint}{1-sin^2t}-32I+\int\dfrac{cost.dt}{cos^2t}\)
\(\Rightarrow64I=\dfrac{sint}{1-sin^2t}-\int\dfrac{d\left(sint\right)}{sin^2t-1}=\dfrac{sint}{1-sin^2t}-\dfrac{1}{2}ln\left|\dfrac{sint-1}{sint+1}\right|+C\)
\(\Rightarrow I=\dfrac{1}{64}\left(\dfrac{2x^4}{4-x^8}-\dfrac{1}{2}ln\left|\dfrac{x^4-2}{x^4+2}\right|\right)+C\)
a.
\(y'=-\dfrac{3}{2}x^3+\dfrac{6}{5}x^2-x+5\)
b.
\(y'=\dfrac{\left(x^2+4x+5\right)'}{2\sqrt{x^2+4x+5}}=\dfrac{2x+4}{2\sqrt{x^2+4x+5}}=\dfrac{x+2}{\sqrt{x^2+4x+5}}\)
c.
\(y=\left(3x-2\right)^{\dfrac{1}{3}}\Rightarrow y'=\dfrac{1}{3}\left(3x-2\right)^{-\dfrac{2}{3}}=\dfrac{1}{3\sqrt[3]{\left(3x-2\right)^2}}\)
d.
\(y'=2\sqrt{x+2}+\dfrac{2x-1}{2\sqrt{x+2}}=\dfrac{6x+7}{2\sqrt{x+2}}\)
e.
\(y'=3sin^2\left(\dfrac{\pi}{3}-5x\right).\left[sin\left(\dfrac{\pi}{3}-5x\right)\right]'=-15sin^2\left(\dfrac{\pi}{3}-5x\right).cos\left(\dfrac{\pi}{3}-5x\right)\)
g.
\(y'=4cot^3\left(\dfrac{\pi}{6}-3x\right)\left[cot\left(\dfrac{\pi}{3}-3x\right)\right]'=12cot^3\left(\dfrac{\pi}{6}-3x\right).\dfrac{1}{sin^2\left(\dfrac{\pi}{3}-3x\right)}\)
a) \(\int\left(x+\ln x\right)x^2\text{d}x=\int x^3\text{d}x+\int x^2\ln x\text{dx}\)
\(=\dfrac{x^4}{4}+\int x^2\ln x\text{dx}+C\) (*)
Để tính: \(\int x^2\ln x\text{dx}\) ta sử dụng công thức tính tích phân từng phần như sau:
Đặt \(\left\{{}\begin{matrix}u=\ln x\\v'=x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u'=\dfrac{1}{x}\\v=\dfrac{1}{3}x^3\end{matrix}\right.\)
Suy ra:
\(\int x^2\ln x\text{dx}=\dfrac{1}{3}x^3\ln x-\dfrac{1}{3}\int x^2\text{dx}\)
\(=\dfrac{1}{3}x^3\ln x-\dfrac{1}{3}.\dfrac{1}{3}x^3\)
Thay vào (*) ta tính được nguyên hàm của hàm số đã cho bằng:
(*) \(=\dfrac{1}{3}x^3-\dfrac{1}{3}x^3\ln x+\dfrac{1}{9}x^3+C\)
\(=\dfrac{4}{9}x^3-\dfrac{1}{3}x^3\ln x+C\)
b) Đặt \(\left\{{}\begin{matrix}u=x+\sin^2x\\v'=\sin x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u'=1+2\sin x.\cos x\\v=-\cos x\end{matrix}\right.\)
Ta có:
\(\int\left(x+\sin^2x\right)\sin x\text{dx}=-\left(x+\sin^2x\right)\cos x+\int\left(1+2\sin x\cos^2x\right)\text{dx}\)
\(=-\left(x+\sin^2x\right)\cos x+\int\cos x\text{dx}+2\int\sin x.\cos^2x\text{dx}\)
\(=-\left(x+\sin^2x\right)\cos x+\sin x-2\int\cos^2x.d\left(\cos x\right)\)
\(=-\left(x+\sin^2x\right)\cos x+\sin x-2\dfrac{\cos^3x}{3}+C\)
\(a=\int\dfrac{1}{2tan^2x+5tanx+2}.\dfrac{dx}{cos^2x}\)
Đặt \(tanx=t\Rightarrow dt=\dfrac{dx}{cos^2x}\)
\(I=\int\dfrac{dt}{2t^2+5t+2}=\int\dfrac{dt}{\left(t+2\right)\left(2t+1\right)}=\dfrac{2}{3}\int\left(\dfrac{1}{2t+1}-\dfrac{1}{2t+4}\right)dt\)
\(=\dfrac{1}{3}ln\left|\dfrac{2t+1}{2t+4}\right|+C=\dfrac{1}{3}ln\left|\dfrac{2tanx+1}{2tanx+4}\right|+C\)
Câu b hoàn toàn tương tự
mình chọn C vì nó có trong SGK