Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích thành nhân tử.
a) a2 (b - c) + b2 (c - a) + c2 (a - b)
b) a3 + b3 + c3 - 3abc
Lời giải:
$(d)$ cắt trục tung tại điểm có tung độ bằng -1, tức là $(d)$ cắt trục tung tại điểm $(0,-1)$
$\Rightarrow -1=(2m-1).0-3m+5$
$\Leftrightarrow -1=-3m+5\Leftrightarrow -6=-3m$
$\Leftrightarrow m=2$
Với $m=2$ thì đths là $y=3x-1$ (bạn có thể tự vẽ)
c.
Giả sử $(d)$ luôn đi qua 1 điểm cố định với mọi $m$ như đề nói. Gọi điểm đó là $(x_0,y_0)$.
Khi đó:
$y_0=(2m-1)x_0-3m+5, \forall m$
$\Leftrightarrow 2mx_0-x_0-3m+5-y_0=0, \forall m$
$\Leftrightarrow m(2x_0-3)+(5-x_0-y_0)=0, \forall m$
$\Rightarrow 2x_0-3=5-x_0-y_0=0$
$\Leftrightarrow x_0=\frac{3}{2}; y_0=\frac{7}{2}$
Vậy $(d)$ luôn đi qua điểm cố định $(\frac{3}{2}; \frac{7}{2})$
Ta sẽ chứng minh BĐT sau: a^2+b^2+c^2>=ab+ac+bc với mọi a,b,c
\(a^2+b^2+c^2>=ab+bc+ac\)
=>\(2a^2+2b^2+2c^2>=2ab+2bc+2ac\)
=>\(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2>=0\)
=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2>=0\)(luôn đúng)
a: ab+ac+bc>=3
mà a^2+b^2+c^2>=ab+ac+bc(CMT)
nên a^2+b^2+c^2>=3
Dấu = xảy ra khi a=b=c=1
Khi a=b=c=1 thì A=1+1+1+10=13
b: a^2+b^2+c^2<=8
Dấu = xảy ra khi \(a^2=b^2=c^2=\dfrac{8}{3}\)
=>\(a=b=c=\dfrac{2\sqrt{2}}{\sqrt{3}}=\dfrac{2\sqrt{6}}{3}\)
Khi \(a=b=c=\dfrac{2\sqrt{6}}{3}\) thì \(B=\dfrac{2\sqrt{6}}{3}\cdot3-5=2\sqrt{6}-5\)
Ta có : \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
\(\Rightarrow a^2c+b^2c-ab^2-ac^2=0\)
\(\Rightarrow a\left(ac-b^2\right)-c\left(ac-b^2\right)=0\)
\(\Rightarrow\left(a-c\right)\left(ac-b^2\right)=0\)
\(\Rightarrow ac=b^2\) ( do \(a\ne c\) )
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{c}{b}=\frac{b}{a}=\frac{a}{c}\)
\(\Rightarrow\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
Gọi dây đi qua M là AB. Kẻ OH vuông góc AB tại H.
Có MB AB≤2R=10
và quan hệ đường vuông góc và đường xiên.
vậy OH có giá trị lớn nhất bằng OM, khi đó độ dài dây AB nhỏ nhất = 8dm (liên hệ dây cung và khoảng cách đến tâm)
....... Từ đó suy ra kết quả.
a) Dây ngắn nhất đi qua M chính là dây vuông góc với bán kính.
Sau đó áp dụng đl Pytago là ra.
b) Dây dài nhất đi qua M chính là đường kính.
a/ \(\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}\)
\(=\sqrt{\frac{2a}{3}\cdot\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\sqrt{\frac{a^2}{2^2}}=\sqrt{\left(\frac{a}{2}\right)^2}=\left|\frac{a}{2}\right|\)
mak ta có \(a\ge0\)
\(\Rightarrow\left|\frac{a}{2}\right|=\frac{a}{2}\)\(\Rightarrow\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}=\frac{a}{2}\)
b/ \(\sqrt{13a}\cdot\sqrt{\frac{52}{a}}\)
\(=\sqrt{13a\cdot\frac{52}{a}}=\sqrt{\frac{13a\cdot52}{a}}=\sqrt{13\cdot52}=\sqrt{13\cdot13\cdot4}=\sqrt{13^2\cdot2^2}=\sqrt{\left(13\cdot2\right)^2}=13\cdot2=26\)
c/ \(\sqrt{5a}\cdot\sqrt{45}-3a\)
\(=\sqrt{5a\cdot45a}-3a=\sqrt{5a\cdot5a\cdot9}-3a\)
\(=\sqrt{5^2\cdot a^2\cdot3^2}-3a=\left|5\cdot a\cdot3\right|-3a\)
\(=15\left|a\right|-3a\)
Có \(a\ge0\Rightarrow\left|a\right|=a\)
\(\Rightarrow15\left|a\right|-3a=15a-3a=12a\)
\(\Rightarrow\sqrt{5a}\cdot\sqrt{45}-3a=12a\)
d/ \(\left(3-a\right)^2-\sqrt{0,2}\cdot\sqrt{180a^2}\)
\(=\left(3-a\right)^2-\sqrt{0,2\cdot180a^2}\)
\(=\left(3-a\right)^2-\sqrt{0,2\cdot9\cdot2\cdot10\cdot a^2}\)
\(=\left(3-a\right)^2-\sqrt{4\cdot9\cdot a^2}\)
\(=\left(3-a\right)^2-\sqrt{2^2\cdot3^2\cdot a^2}\)
\(=\left(3-a\right)^2-\left|2\cdot3\cdot a\right|\)
\(=\left(3-a\right)^2-6\left|a\right|=9-6a+a^2-6\left|a\right|\)
Chia làm 2 Trường Hợp:
+ TH1 : \(9-6a+a^2-6a=9-12a+a^2\left(a\ge0\right)\)
+ TH2 : \(9-6a+a^2-\left(-6a\right)=9+a^2\left(a< 0\right)\)