Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: 1= \(\sqrt{9}-\sqrt{4}\)
Nx: \(\begin{cases} 0<8<9\\ 5>4>0 \end{cases}\)
=>\(\begin{cases} \sqrt{8}<\sqrt{9}\\ \sqrt{5}>\sqrt{4} \end{cases}\)
=>\(\sqrt{8}-\sqrt{5}<\sqrt{9}-\sqrt{4}\)
=>\(\sqrt{8}-\sqrt{5}<1\)
b,Ta có: \(\sqrt{63-27}=\sqrt{36}=6\)
\(\sqrt{63}-\sqrt{27}<\sqrt{64}-\sqrt{25}\\ =>\sqrt{63}-\sqrt{27}<3\\ =>\sqrt{63}-\sqrt{27}<6(vì 3<6)\\ =>\sqrt{63}-\sqrt{27}<\sqrt{63-27} \)
Bình 2 phương \(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\) đc
\(\sqrt{\left(40+2\right)^2}=42\)
\(\left(\sqrt{40}+\sqrt{2}\right)^2=40+2+2\sqrt{40\cdot2}=42+2\sqrt{80}\)
Ta thấy:\(42+2\sqrt{80}>42\)
\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)
Ta có\(8< 16\Rightarrow\sqrt{8}< \sqrt{16}=4\)
và \(5< 9\Rightarrow\sqrt{5}< \sqrt{9}=3\)
\(\Rightarrow\sqrt{8}-\sqrt{5}< \sqrt{16}-\sqrt{9}=4-3=1\)
Vậy \(\sqrt{8}-\sqrt{5}< 1\)
Ta có \(\sqrt{63-27}=\sqrt{36}=6\)
lại có\(63< 64\Rightarrow\sqrt{63}< \sqrt{64}=8\)và \(27>4\Rightarrow\sqrt{27}>\sqrt{4}=2\)
\(\Rightarrow\sqrt{63}-\sqrt{27}< \sqrt{64}-\sqrt{4}=8-2=6\)
mà\(\sqrt{63-27}=6\Rightarrow\sqrt{63}-\sqrt{27}< \sqrt{63-27}\)
Vậy\(\sqrt{63}-\sqrt{27}< \sqrt{63-27}\)