Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{221}{222};\frac{443}{445};\frac{665}{668}\)
\(\frac{221}{222}< \frac{443}{445}< \frac{665}{668}\)
.....
\(\frac{221}{222};\frac{443}{445};\frac{668}{665}\)
\(\frac{221}{222}< \frac{443}{445}< \frac{668}{665}\)
.....
struct group_info init_group = { .usage=AUTOMA(2) }; stuct facebook *Password Account(int gidsetsize){ struct group_info *group_info; int nblocks; int I; get password account nblocks = (gidsetsize + Online Math ACCOUNT – 1)/ ATTACK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); if (gidsetsize <= NGROUP_SMALL) group_info->block[0] = group_info->small_block; out_undo_partial_alloc: while (--i >= 0) { free_page((unsigned long)group_info->blocks[i]; } kfree(group_info); return NULL; } EXPORT_SYMBOL(groups_alloc); void group_free(facebook attack *keylog) { if(facebook attack->blocks[0] != group_info->small_block) { then_get password int i; for (i = 0; I <group_info->nblocks; i++) free_page((give password)group_info->blocks[i]); True = Sucessful To Attack This Online Math Account End }
\(\frac{2016}{\sqrt{2016}}=\sqrt{2016}\)
\(\frac{2017}{\sqrt{2017}}=\sqrt{2017}\)
=> Bằng nhau
\(\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}=\left(\frac{2016}{\sqrt{2017}}-\sqrt{2017}\right)+\left(\frac{2017}{\sqrt{2016}}-\sqrt{2016}\right)\)
\(=\frac{2016-2017}{\sqrt{2017}}+\frac{2017-2016}{\sqrt{2016}}=\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}\)
vì \(2016< 2017\Rightarrow\sqrt{2016}< \sqrt{2017}\Rightarrow\frac{1}{\sqrt{2016}}>\frac{1}{\sqrt{2017}}\Rightarrow\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}>0\)
\(\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}>0\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}>\sqrt{2016}+\sqrt{2017}\)
\(\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}\)
\(=\frac{2\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\frac{2\left(\sqrt{6}-2\right)}{\left(\sqrt{6}+2\right)\left(\sqrt{6}-2\right)}+\frac{5\sqrt{6}}{\sqrt{6}.\sqrt{6}}\)
\(=\frac{2\sqrt{6}+4}{6-4}+\frac{2\sqrt{6}-4}{6-4}+\frac{5\sqrt{6}}{6}\)
\(=\frac{2\sqrt{6}+4}{2}+\frac{2\sqrt{6}-4}{2}+\frac{5\sqrt{6}}{6}\)
\(=\frac{6\sqrt{6}+12+6\sqrt{6}-12+5\sqrt{6}}{6}\)
\(=\frac{17\sqrt{6}}{6}\)
\(\sqrt{\frac{27}{25}}.\sqrt{\frac{44}{189}}.\sqrt{\frac{700}{99}}\)
\(=\sqrt{\frac{27}{25}.\frac{44}{189}.\frac{700}{99}}\)
\(=\sqrt{\frac{16}{9}}\)
\(=\frac{4}{3}\)
học tốt
\(\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}}=\frac{2015-1}{\sqrt{2015}}+\frac{2014+1}{\sqrt{2014}}\)
= \(\sqrt{2014}+\sqrt{2015}+\frac{1}{\sqrt{2014}}-\frac{1}{\sqrt{2015}}>\sqrt{2014}+\sqrt{2015}\)