Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với a+b+c khác 0
=> A=a/b+c =b/a+c = c/b+a = a+b+c/b+c+a+c+b+a = a+b+c/2.(a+b+c) =1/2
=> A=1/2
với a+b+c =0
=>a+b= -c
b+c= -a
a+c= -b
thay vào A ta được :
=>A= a/-a = b/-b = c/-c=-1
=>A= -1
vậy A= -1 hoặc 1/2
1)a,b,c có khác 0 không bạn
nếu khác 0 thì tớ mới làm được
Ta có: \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
...
\(\frac{1}{2014^2}<\frac{1}{2013.2014}\)
Cộng vế theo vế ta được
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=1-\frac{1}{2014}<1\)
Ta có : \(A\)\(\ge0\) và \(A<1\left(cmt\right)\)
=> [A]=0
ta xét 2 TH:
+)A>0 (luôn đúng)
+)ta có : 1/n2 < 1/(n-1).n với n>1
=>\(A<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2013.2014}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{2013}-\frac{1}{2014}=\frac{1}{1}-\frac{1}{2014}=\frac{2013}{2014}<1\)
=>A<1
do đó 0<A<1 <=>[A]=0
Cái đó là kí hiệu [] chứ ko phải () nhé
Đáp án là 0 nha!
Bạn giải đầy đủ đi rồi mình k cho