K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

Chia thành nhóm:

Nhóm 1: 3 số

\(\sqrt{1}\leq \sqrt{1},\sqrt{2},\sqrt{3}<\sqrt{4}\)\(\Leftrightarrow 1\leq \sqrt{1},\sqrt{2},\sqrt{3}< 2\)

Do đó, \([\sqrt{1}]=[\sqrt{2}]=[\sqrt{3}]=1\)

Nhóm 2: 5 số\(\sqrt{4} \leq \sqrt{4},\sqrt{5},....,\sqrt{8}<\sqrt{9}\Leftrightarrow 2\leq \sqrt{4},\sqrt{5},...,\sqrt{8}< 3\)

\(\Rightarrow [\sqrt{4}]=[\sqrt{5}]=...=[\sqrt{8}]=2\)

Nhóm 3: 7 số

\(3\leq \sqrt{9}.\sqrt{10},...,\sqrt{15}< \sqrt{16}=4\)

\(\Rightarrow [\sqrt{9}],[\sqrt{10}],....,[\sqrt{15}]=3\)

Nhóm 4: 9 số

\(4\leq \sqrt{16},\sqrt{17},...,\sqrt{24}< \sqrt{25}=5\)

\(\Rightarrow [\sqrt{16}]=[\sqrt{17}]=...=[\sqrt{24}]=4\)

Nhóm 5: 11 số

\(5\leq \sqrt{25},\sqrt{26},....\sqrt{35}<\sqrt{36}=6\)

\(\Rightarrow [\sqrt{25}]=[\sqrt{26}]=...=[\sqrt{35}]=5\)

Do đó:

\([\sqrt{1}]+[\sqrt{2}]+....+[\sqrt{35}]=3.1+5.2+7.3+9.4+11.5=125\)

18 tháng 8 2016

Đặt \(A=\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+\left[\sqrt{4}\right]+...+\left[\sqrt{212041}\right]\)

\(=\left(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]\right)+\left(\left[\sqrt{4}\right]+...+\left[\sqrt{8}\right]\right)+\left(\left[\sqrt{9}\right]+...+\left[\sqrt{15}\right]\right)+...+\left(\left[\sqrt{210681}\right]+...+\left[\sqrt{211599}\right]\right)+\left(\left[\sqrt{211600}\right]+\left[\sqrt{212041}\right]\right)\)

Theo cách chia nhóm như trên, nhóm 1 có 3 số, nhóm 2 có 5 số, nhóm 3 có 7 số, nhóm 4 có 9 số, ..., nhóm 459 có 919 số, nhóm cuối cùng có 442 số. Các số thuộc nhóm 1 bằng 1, các số thuộc nhóm 2 bằng 2, các số thuộc nhóm 3 bằng 3, ..., các số thuộc nhóm 459 bằng 459, Các số thuộc nhóm cuối cùng bằng 460.

Do đó \(A=1.3+2.5+3.7+...+459.919+460.442\)

            \(=1\left(1.2+1\right)+2.\left(2.2+1\right)+3.\left(3.2+1\right)+...+459.\left(459.2+1\right)+203320\)

            \(=\left(2.1^2+1\right)+\left(2.2^2+1\right)+\left(2.3^2+1\right)+...+\left(2.459^2+1\right)+203320\)

            \(=2.\left(1^2+2^2+3^2+...+459^2\right)+\left(1+2+3+...+459\right)+203320\)

            \(=2.\frac{1}{6}.459.460.919+105570+203320=64988110\)

18 tháng 8 2016

123hehe321

6 tháng 12 2019

\(\Rightarrow\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+...+\left[\sqrt{35}\right]=3.1+5.2+7.3+9.4+11.5\)

\(\Rightarrow\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+...+\left[\sqrt{35}\right]=3+10+21+36+55\)

\(\Rightarrow\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+...+\left[\sqrt{35}\right]=125.\)

Chúc bạn học tốt!

13 tháng 10 2015

Minh Hiền em chưa học nên em ko biết làm hihi

13 tháng 10 2015

Hiền mà không biết làm thì ai làm được. Hỏi thêm dấu [] là gì thế

24 tháng 12 2023

\(a,\cdot\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]\cdot\left[5,25:\left(\sqrt{7}\right)^2\right]\right\}:\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}\\ =\left[\left(8:2,4\right)\cdot\left(5,25:7\right)\right]:\left[\left(\dfrac{15}{7}:\dfrac{5}{7}\right):\left(4:\dfrac{8}{9}\right)\right]\\ =\left(\dfrac{10}{3}\cdot\dfrac{3}{4}\right):\left(3:\dfrac{9}{2}\right)\\ =\dfrac{5}{2}:\dfrac{2}{3}\\ =\dfrac{15}{4}\)

24 tháng 12 2023

a: \(\dfrac{\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]\cdot\left[5,25:\left(\sqrt{7}^2\right)\right]\right\}}{\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\right\}}\)

\(=\dfrac{\dfrac{8}{2,4}\cdot\dfrac{5,25}{7}}{\left(\dfrac{15}{7}:\dfrac{5}{7}\right):\left(4:\dfrac{8}{9}\right)}\)

\(=\dfrac{\dfrac{10}{3}\cdot\dfrac{3}{4}}{3:\left(4\cdot\dfrac{9}{8}\right)}\)

\(=\dfrac{\dfrac{10}{4}}{3:\left(\dfrac{9}{2}\right)}=\dfrac{5}{2}:\left(3\cdot\dfrac{2}{9}\right)=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{15}{4}\)

b: \(\sqrt{\left(x-\sqrt{2}\right)^2}=\left|x-\sqrt{2}\right|>=0\forall x\)

\(\sqrt{\left(y+\sqrt{2}\right)^2}=\left|y+\sqrt{2}\right|>=0\forall y\)

\(\left|x+y+z\right|>=0\forall x,y,z\)

Do đó: \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|>=0\forall x,y,z\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)

9 tháng 10 2016

CÁC câu này cứ bình phương 2 vế là ra ấy mà 

5 tháng 10 2018

4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)

\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)

Tìm z thì dễ rồi