K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 2 2022

Áp dụng định lý Pitago cho tam giác vuông ACD:

\(CD^2=AD^2+AC^2\)

Áp dụng định lý Pitago cho tam giác vuông ABC:

\(CB^2=AB^2+AC^2\)

\(\Rightarrow CD^2-CB^2=AD^2+AC^2-AB^2-AC^2=AD^2-AB^2\) (1)

Áp dụng định lý Pitago cho tam giác vuông ADE:

\(ED^2=AD^2+AE^2\)

Áp dụng định lý Pitago cho tam giác vuông ABE:

\(EB^2=AB^2+AE^2\)

\(\Rightarrow ED^2-EB^2=AD^2+AE^2-AB^2-AE^2=AD^2-AB^2\) (2)

(1);(2) \(\Rightarrow CD^2-CB^2=ED^2-EB^2\)

15 tháng 2 2022

Ta cần CM: \(CD^2-CB^2=ED^2-EB^2\Leftrightarrow CD^2-AB^2-AC^2=ED^2-EB^2\Leftrightarrow EB^2-AB^2=ED^2-\left(CD^2-AC^2\right)\Leftrightarrow AE^2=ED^2-AD^2\left(luônđúng\right)\) (vì các tam giác ACD, ABE,ADE đều vuông tại A) \(\Rightarrowđpcm\)

29 tháng 4 2019

Bn làm sai rồi!

Góc E2 đề vẫn chưa cho vuông

1.Ta có : Tam giác ABC là tam giác vuông cân.

=>AB=AC

Mặt khác có:

Mà =>lại có: Tam giác HBA vuông tại H và tam giác KAC vuông tại K

Từ:=> Tam giác HBA = Tam giác KAC [ch-gn]

=> BH=AK [đpcm]

Mặt khác mà :=> Tam giác AHM= Tam giác CKM [c.g.c] vì

Có:AM=MC [AM là trung tuyến ứng với cạnh huyền]

AH=CK [ câu a ]

=>MH=MK

Ta có: [AM là đường cao]

Từ => HMK vuông

Kết hợp =>MHK là tam giác vuông cân.

TICK CHO MK NHA CHÚC BẠN HỌC GIỎI.hihi

 

 

 

MK BT BÀI NÀY MK LÀM BẠN TICK CHO MK NHA

1 tháng 4 2022

a, Ta có \(BC^2=AB^2+AC^2\Leftrightarrow25=9+16\)( luôn đúng ) 

Vậy tam giác ABC vuông tại A(pytago đảo) 

b, Xét tam giác BAD và tam giác BED có 

^ABD = ^EBD ; BD _ chung 

Vậy tam giác BAD = tam giác BED ( ch-gn) 

=> DA = DE ( 2 cạnh tương ứng ) 

c, Xét tam giác ADF và tam giác EDC có 

DA = DE ; ^ADF = ^EDC ( đối đỉnh ) 

Vậy tam giác ADF = tam giác EDC ( ch-cgv) 

=> DF = DC ( 2 cạnh tương ứng ) 

mà DC > DE ( cạnh huyền lớn hơn cạnh góc vuông tam giác DEC vuông tại E ) 

=> DF > DE 

12 tháng 4 2022

chuẩn lun giỏi quá cho 1 like

a: Ta có: ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=10^2-6^2=64\)

=>\(AH=\sqrt{64}=8\left(cm\right)\)

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của góc BAC

c: Ta có: ΔAHB=ΔAHC

=>BH=CH

Xét ΔBMH vuông tại M và ΔCNH vuông tại N có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBMH=ΔCNH

d: Xét ΔABO vuông tại B và ΔACO vuông tại C có

AO chung

AB=AC

Do đó: ΔABO=ΔACO

=>OB=OC

=>ΔOBC cân tại O

3 tháng 3 2022

a.Xét tam giác vuông AHB và tam giác vuông AHC, có:

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

Vậy tam giác vuông AHB = tam giác vuông AHC ( cạnh huyền. góc nhọn)

=> HB = HC ( 2 cạnh tương ứng )

b.Xét tam giác vuông ADH và tam giác vuông AEH, có:

AH: cạnh chung

góc DAH = góc EAH ( AH là đường cao cũng là đường phân giác )

Vậy tam giác vuông ADH = tam giác vuông AEH

=> HD = HE ( 2 cạnh tương ứng )

=> tam giác HDE cân tại H

c.Xét tam giác vuông AEC và tam giác vuông ADB, có:

AB = AC ( ABC cân )

góc A: chung 

Vậy tam giác vuông AEC = tam giác vuông ADB ( cạnh huyền.góc nhọn)

=> AD = AE ( 2 cạnh tương ứng )

=> tam giác ADE cân tại A

=> AH vuông với DE, mà AH cũng vuông với BC

=> DE//BC ( DE ko phải DC nha bạn )

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó:ΔAHB=ΔAHC

Suy ra: HB=HC

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

c: Ta có: ΔADH=ΔAEH

nên AD=AE

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

6 tháng 5 2018

â)Ta có :  AB = AC =10 cm (gt)

=> tam giác ABC cân tại A (2 cạnh bên = nhau )

b) Xét tam giác AHB va tam giac AHC ,co : 

\(\widehat{AHB}=\widehat{AHC}=90^O\) ( AH là đường cao ) 

AB =AC =10 cm (gt )

AH là cạnh chung 

Do đo : tam giác AHB =tam giác AHC ( cạnh huyền - cạnh góc vuông ) 

=>\(\widehat{BAH}=\widehat{CAH}\)( hai góc tương ứng ) 

=>AH là tia phân giác của góc A 

c)Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác 

Nên :H là trung điểm của BC

=>BH = CH  = \(\frac{BC}{2}\)=12/2 = 6 cm

6 tháng 5 2018

TRẢ LỜI TIẾP CÂU Ở TRÊN NHA  ( HỒI NÃY BẤM NHẦM GỬI TRẢ LỜI ) 

b) Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác  

Nên : H là trung điểm của BC

=> BH =CH =\(\frac{BC}{2}=\frac{12}{2}=6cm\)

Xét : tam giác BMH và tam giác HCN , co :

 BH = CH = 6cm ( chứng minh trên ) 

\(\widehat{M}=\widehat{N}=90^o\left(gt\right)\)

\(\widehat{B}=\widehat{C}\) (Vì tam giác ABC cân tại A nên hai góc ở đáy = nhau ) 

Do do:tm giác BHM = tam giác HCN

đ) Áp dụng định lý pytago vào tam giác  AHC vuông tại H 

\(AH^2=AC^2-HC^2\) =\(10^2-6^2\)=\(100-36=64\)

=>\(AH=\sqrt{64}=8cm\)  OK CHÚC BẠN HỌC TỐT