Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
Tháng 4 phải trả:
\(50\cdot1678+50\cdot1734+100\cdot2014+100\cdot2536+1\cdot2834=628434\left(đồng\right)\)
Tháng 5 phải trả:
\(50\cdot1678+50\cdot1734+100\cdot2014+98\cdot2536=620528\left(đồng\right)\)
=>Giảm 1,3%
a) Vì AB là đường kính \(\Rightarrow\angle ADB=90\)
\(\Rightarrow\angle ADE=\angle AHE=90\Rightarrow AHDE\) nội tiếp
b) Vì AB là đường kính \(\Rightarrow\angle ACB=90\Rightarrow BC\bot AE\)
Vì \(\left\{{}\begin{matrix}EI\bot AB\\AI\bot BE\end{matrix}\right.\Rightarrow I\) là trực tâm \(\Delta EAB\Rightarrow BI\bot AE\Rightarrow B,I,C\) thẳng hàng
Ta có: \(\angle CFD=\angle CAD\left(CDFAnt\right)=\angle EAD=\angle EHD\)
\(\Rightarrow EH\parallel CH\) mà \(EH\bot AB\Rightarrow CF\bot AB\)
CF cắt AB tại G \(\Rightarrow G\) là trung điểm CF mà \(CF\bot AB\Rightarrow\Delta CBF\) cân tại B
Ta có: \(OA=OC=AC=R\Rightarrow\Delta OAC\) đều \(\Rightarrow\angle CAO=60\)
Vì CAFB nội tiếp \(\Rightarrow\angle CFB=\angle CAB=60\Rightarrow\Delta CFB\) đều
Bài 4:
a) Thay x=49 vào B ta có:
\(B=\dfrac{1-\sqrt{49}}{1+\sqrt{49}}=-\dfrac{3}{4}\)
b) \(A=\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(A=\left[\dfrac{15-\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right]\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(A=\dfrac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(A=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(A=\dfrac{1}{\sqrt{x}-5}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(A=\dfrac{1}{\sqrt{x}+1}\)
c) Ta có:
\(M=A-B=\dfrac{1}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\)
\(M=\dfrac{1-1+\sqrt{x}}{\sqrt{x}+1}\)
\(M=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(M=\dfrac{\sqrt{x}+1-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}=1-\dfrac{1}{\sqrt{x}+1}\)
Mà M nguyên khi:
\(1\) ⋮ \(\sqrt{x}+1\)
\(\Rightarrow\sqrt{x}+1\in\left\{1;-1\right\}\)
Mà: \(\sqrt{x}+1\ge1\)
\(\Rightarrow\sqrt{x}+1=1\)
\(\Rightarrow\sqrt{x}=0\)
\(\Rightarrow x=0\left(tm\right)\)
Vậy M nguyên khi x=0
b: Thay x=-1 và y=-3 vào (d1), ta được:
-3=-1+2
=>-3=1(loại)
=>A ko thuộc (d1)
Thay x=-1 và y=1 vào (d1), ta đc:
-1+2=1
=>1=1
=>B thuộc (d1)
c: Tọa độ C là:
x+2=-1/2x+2 và y=x+2
=>x=0 và y=2
\(\dfrac{1}{2x_1+x_2-\dfrac{1}{3}}+\dfrac{1}{x_1+2x_2-\dfrac{1}{3}}\)
\(=\dfrac{x_1+2x_2-\dfrac{1}{2}+2x_1+x_2-\dfrac{1}{3}}{\left(2x_1+x_2-\dfrac{1}{3}\right)\left(x_1+2x_2-\dfrac{1}{3}\right)}\)
\(=\dfrac{3x_1+3x_2-\dfrac{2}{3}}{2x_1^2+4x_1x_2-\dfrac{2}{3}x_1+x_1x_2+2x_2^2-\dfrac{1}{3}x_2-\dfrac{1}{3}x_1-\dfrac{2}{3}x_2+\dfrac{1}{9}}\)
\(=\dfrac{3x_1+3x_2-\dfrac{2}{3}}{2x_1^2+5x_1x_2-x_1+2x_2^2-x_2+\dfrac{1}{9}}\)
\(=\dfrac{3\left(x_1+x_2-\dfrac{2}{3}\right)}{2\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)+5x_1x_2+\dfrac{1}{9}}\)
\(=\dfrac{3\left(x_1+x_2-\dfrac{2}{3}\right)}{2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-\left(x_1+x_2\right)+5x_1x_2+\dfrac{1}{9}}\)
Áp dụng định lí Vi-ét : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{4}{12}=\dfrac{1}{3}\\x_1x_2=\dfrac{c}{a}=-\dfrac{3}{12}=-\dfrac{1}{4}\end{matrix}\right.\)
Ta được : \(\dfrac{3\left(\dfrac{1}{3}-\dfrac{2}{3}\right)}{2\left[\left(\dfrac{1}{3}\right)^2-2\cdot\left(-\dfrac{1}{4}\right)\right]-\dfrac{1}{3}+5\cdot\left(-\dfrac{1}{4}\right)+\dfrac{1}{9}}=4\)
a: \(\left\{{}\begin{matrix}3x+6y=4\\x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6y=4\\3x+12y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-6y=-2\\x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Câu 1:
1: Ta có: \(A=3\sqrt{25}-\sqrt{36}-\sqrt{64}\)
\(=3\cdot5-6-8\)
\(=15-6-8=1\)
Câu I:
2: Ta có: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{x+1}{x-1}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-1}{x-1}=1\)
làm giúp e bài 4 câu b với ạ