Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số sản phẩm dự định là a (sản phẩm ) (a là số tự nhiên khác 0)
Vì theo dự định mỗi ngày sản xuất 50 sản phẩm nên số ngày theo dự định là \(\dfrac{a}{50}\)
Nhưng thực tế , đội đã sản xuất theeo được 30 sản phẩm do mỗi ngày vượt mức 10 sản phẩm (nghĩa là sản xuất 60 sản phẩm) , nên số ngày thực tế là \(\dfrac{a+30}{60}\)
Vì thực tế sớm hơn dự định 2 ngày nên ta có phương trình :
\(\dfrac{a}{50}=\dfrac{a+30}{60}+2\\ \Leftrightarrow6a=5\left(a+30+120\right)\\\Leftrightarrow a=750\left(t.m\right) \)
Vậy số sản phẩm dự định là 750 sản phẩm
Bài 3:
Gọi số sản phẩm đội phải sản xuất theo kế hoạch là x( sản phẩm, x\(\in N\)*)
Thời gian đội sản xuất theo kế hoạch là: \(\dfrac{x}{50}\) (ngày)
Số ngày làm thực tế là: \(\dfrac{x+30}{50+10}=\dfrac{x+30}{60}\) (ngày)
Theo bài ra, ta có phương trình:
\(\dfrac{x}{50}-\dfrac{x+30}{60}=2\)
\(\Leftrightarrow\dfrac{60x-50\left(x+30\right)}{50.60}=2\)
\(\Leftrightarrow60x-50x-1500=6000\Leftrightarrow x=750\)(thoả mãn)
Vậy theo kế hoạch đội phải sản xuất 750 sản phẩm
\(C=3x^{n-2+n+2}-3x^{n-2}y^{n+2}+3x^{n-2}y^{n+2}-y^{n+2+n-2}\\ C=3x^{2n}-y^{2n}\)
\(1,\\ a,=\left[x^3\left(x-2\right)-4x\left(x-2\right)\right]:\left(x^2-4\right)\\ =x\left(x^2-4\right)\left(x-2\right):\left(x^2-4\right)=x\left(x-2\right)\\ b,=\left(2014-14\right)^2=2000^2=4000000\\ 2,\\ A=2015\cdot2013\cdot\left(2014^2+1\right)\\ A=\left(2014^2-1\right)\left(2014^2+1\right)\\ A=2014^4-1< B=2014^4\)
c) \(pt\Leftrightarrow\dfrac{5\left(5x+2\right)-10\left(8x-1\right)-6\left(4x+2\right)-30}{30}=0\Leftrightarrow-79x-22=0\Leftrightarrow x=-\dfrac{22}{79}\)
d) \(pt\Leftrightarrow\dfrac{3\left(3x+2\right)-3x-1-6.2x+5.2}{6}=0\Leftrightarrow-6x+15=0\Leftrightarrow x=\dfrac{15}{6}\)
câu 1:
x3-1+3x2-3x =(x-1)(x^2+x+1)+3x(x-1)=(x-1)(x^2+x+1+3x)=(x-1)(x^2+4x=1)
Câu 2 :
a) \(\left(x^4-2x^3+2x-1\right):\left(x^2-1\right)\)
\(=\left(x^4-x^2-2x^3+2x+x^2-1\right):\left(x^2-1\right)\)
\(=\left[x^2\left(x^2-1\right)-2x\left(x^2-1\right)+\left(x^2-1\right)\right]:\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-2x+1\right):\left(x^2-1\right)\)
\(=x^2-2x+1\)
b) \(\left(x^6-2x^5+2x^4+6x^3-4x^2\right):6x^2\)
\(=\frac{1}{6}x^4-\frac{1}{3}x^3+\frac{1}{3}x^2+x-\frac{2}{3}\)
Câu 3 :
Sửa đề :
\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)
Bài 3:
a: \(A=\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}:\dfrac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x-4\right)}\)
\(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-4\right)\left(x+3\right)}\cdot\dfrac{x+2}{x-1}=\dfrac{x+2}{x-1}\)
b: Để A=3/2 thì 3(x-1)=2(x+2)
=>3x-3=2x+4
=>x=7(nhận)
Thiếu bạn nhé