Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)
\(2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}\right)=2.\frac{15}{93}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right).\left(2x+3\right)}=\frac{30}{93}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
=> 2x + 3 = 93
=> 2x = 93 - 3
=> 2x = 90
=> x = 90 : 2
=> x = 45
Vậy x = 45
\(a,\dfrac{1}{2}-\dfrac{1}{3}-\left(-\dfrac{5}{4}\right)=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{5}{4}=\dfrac{1\times6-1\times4+5\times3}{12}=\dfrac{6-4+15}{12}=\dfrac{17}{12}\\ b,\dfrac{5}{4}-\dfrac{1}{2}-\dfrac{7}{8}=\dfrac{5\times2-1\times4-7}{8}=\dfrac{10-4-7}{8}=-\dfrac{1}{8}\\ c,\dfrac{1}{5}-\dfrac{1}{2}+\dfrac{9}{10}=\dfrac{1\times2-1\times5+9}{10}=\dfrac{2-5+9}{10}=\dfrac{6}{10}=\dfrac{3}{5}\\ d,\dfrac{5}{4}-\dfrac{1}{3}+\dfrac{7}{6}=\dfrac{5\times3-1\times4+7\times2}{12}=\dfrac{15-4+14}{12}=\dfrac{25}{12}\)
a) \(\left(\frac{4}{13}.\frac{6}{5}+\frac{4}{13}.\frac{2}{5}\right).\left(2x+1\right)^2=\frac{10}{13}\)
\(\left(\frac{4}{13}.\frac{8}{5}\right).\left(2x+1\right)^2=\frac{10}{13}\)
\(\frac{32}{65}.\left(2x+1\right)^2=\frac{10}{13}\)
\(\left(2x+1\right)^2=\frac{10}{13}\div\frac{32}{65}\)
\(\left(2x+1\right)^2=\frac{25}{16}\)
\(\Rightarrow2x+1\in\left\{\frac{5}{4};-\frac{5}{4}\right\}\)
\(\hept{\begin{cases}2x+1=\frac{5}{4}\\2x+1=-\frac{5}{4}\end{cases}\Rightarrow\hept{\begin{cases}2x=\frac{1}{4}\\2x=-\frac{9}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{8}\\x=-\frac{9}{8}\end{cases}}}\)
Vậy \(x\in\left\{\frac{1}{8};-\frac{9}{8}\right\}\)
\(x^3-\frac{9}{16}.x=0\)
\(x\left(x^2-\frac{9}{16}\right)=0\)
\(\hept{\begin{cases}x=0\\x^2-\frac{9}{16}=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=\frac{9}{16}\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=\pm\frac{3}{4}\end{cases}}}\)
Vậy \(x\in\left\{0;\frac{3}{4};-\frac{3}{4}\right\}\)
= 2/3 + 1/3 . 7/18 : 5/12
= 2/3 + 7/54 : 5/12
= 2/3 + 14/45
= 44/45