Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(F=\dfrac{a}{b+2}\Rightarrow F.b+2F=a\)
\(\Rightarrow2F=a-F.b\)
\(\Rightarrow4F^2=\left(a-F.b\right)^2\le\left(a^2+b^2\right)\left(1^2+F^2\right)=F^2+1\)
\(\Rightarrow3F^2\le1\)
\(\Rightarrow-\dfrac{1}{\sqrt{3}}\le F\le\dfrac{1}{\sqrt{3}}\)
Dấu "=" lần lượt xảy ra tại \(\left(a;b\right)=\left(-\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\) và \(\left(\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\)
b. Đặt \(\left\{{}\begin{matrix}a+b=x\\a-2b=y\end{matrix}\right.\) quay về câu a
nhân cả vế với abc ta có điều cần chứng minh
\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)
VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)
=>(đpcm)
mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\)
chỉ cần chứng minh được \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé
e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)
= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)
= \(\dfrac{2x-6}{2x\left(x+3\right)}\)
= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)
c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)
ĐKXĐ: \(a\notin\left\{1;-1;0\right\}\)
\(A=\left(\dfrac{a+2}{a+1}-\dfrac{a-2}{a-1}\right)\cdot\dfrac{a+1}{a}\)
\(=\dfrac{\left(a+2\right)\left(a-1\right)-\left(a-2\right)\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\cdot\dfrac{a+1}{a}\)
\(=\dfrac{a^2+a-2-\left(a^2-a-2\right)}{a-1}\cdot\dfrac{1}{a}\)
\(=\dfrac{2a}{a-1}\cdot\dfrac{1}{a}=\dfrac{2}{a-1}\)
A=2B
=>\(\dfrac{2}{a-1}=\dfrac{2\cdot3}{a^2-1}\)
=>\(\dfrac{1}{a-1}=\dfrac{3}{a^2-1}\)
=>\(\dfrac{1}{a-1}=\dfrac{3}{\left(a-1\right)\left(a+1\right)}\)
=>\(\dfrac{a+1}{\left(a-1\right)\left(a+1\right)}=\dfrac{3}{\left(a-1\right)\left(a+1\right)}\)
=>a+1=3
=>a=2(nhận)
\(\dfrac{4a^2-9b^2}{a^2b^2}\div\dfrac{2ax+3bx}{2ab}\)
\(=\dfrac{\left(2a-3b\right)\left(2a+3b\right)}{a^2b^2}\times\dfrac{2ab}{x\left(2a+3b\right)}\)
\(=\dfrac{2ab\left(2a-3b\right)\left(2a+3b\right)}{a^2b^2x\left(2a+3b\right)}=\dfrac{4a-6b}{xab}\)
2 x25−4b2:15+2b
\(=\dfrac{2x}{\left(5-2b\right)\left(5+2b\right)}\times\dfrac{5+2b}{1}\)
\(=\dfrac{2x\left(5+2b\right)}{\left(5-2b\right)\left(5+2b\right)}=\dfrac{2x}{5-2b}\)
(2−a)22ab.b(2−a)+12
\(=\dfrac{\left(2-a\right)^2b}{2ab\left(2-a\right)}+\dfrac{1}{2}\)
\(=\dfrac{2b-ab}{2ab}+\dfrac{1}{2}\)
\(=\dfrac{2b-ab}{2ab}+\dfrac{ab}{2ab}=\dfrac{2b}{2ab}=\dfrac{1}{a}\)
2 b+22b−b2:b+1b+2b+23b−6
\(=\dfrac{2\left(b+1\right)}{b\left(2-b\right)}\times\dfrac{b}{b+1}+\dfrac{2b+2}{3b-6}\)
\(=\dfrac{2b\left(b+1\right)}{\left(2-b\right)b\left(b+1\right)}+\dfrac{2b+2}{3b-6}\)
\(=\dfrac{2}{2-b}-\dfrac{2\left(b+1\right)}{3\left(2-b\right)}\)
\(=\dfrac{6}{3\left(2-b\right)}-\dfrac{2\left(b+1\right)}{3\left(2-b\right)}\)
\(=\dfrac{6-2\left(b+1\right)}{3\left(2-b\right)}\)
\(=\dfrac{4-2b}{3\left(2-b\right)}=\dfrac{2\left(2-b\right)}{3\left(2-b\right)}=\dfrac{2}{3}\)