Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow a^3+6a^2b+12ab^2+8b^3=6a^2b+12ab^2-6ab+1\)
\(\Leftrightarrow\left(a+2b\right)^3=6ab\left(a+2b-1\right)+1\)
\(\Leftrightarrow\left(a+2b\right)^3-1-6ab\left(a+2b-1\right)=0\)
\(\Leftrightarrow\left(a+2b-1\right)\left(\left(a+2b\right)^2+a+2b+1\right)-6ab\left(a+2b-1\right)=0\)
\(\Leftrightarrow\left(a+2b-1\right)\left(a^2+4ab+4b^2+a+2b+1-6ab\right)=0\)
\(\Leftrightarrow\left(a+2b-1\right)\left(a^2-2ab+4b^2+a+2b+1\right)=0\)
TH1: Nếu \(a+2b-1=0\)
\(\Leftrightarrow a+2b-1=0\)
\(\Rightarrow a+2b=1\)
TH2: \(a^2-2ab+4b^2+a+2b+1=0\)
\(\Leftrightarrow a^2-2ab+4b^2+a+2b+1=0\)
\(\Leftrightarrow\left(a-b+\frac{1}{2}\right)^2+3\left(b+\frac{1}{2}\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}a-b+\frac{1}{2}=0\\b+\frac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow a+2b=-2\)
a/ 1/2 quá dễ
b/ Kẻ DO//FC có d là tđ BC suy ra O là tđ BF\(\Rightarrow\frac{OF}{BF}=\frac{OF}{AF}=\frac{1}{2}\)
FG//OD suy ra \(\frac{\Rightarrow OF}{AF}=\frac{GD}{AG}=\frac{1}{2}\) vậy AG/GD=2
a, Xét : 196 = 14^2 = (a^2+b^2+c^2) = a^4+b^4+c^4+2.(a^2b^2+b^2c^2+c^2a^2)
<=> a^4+b^4+c^4 = 196 - 2.(a^2b^2+b^2c^2+c^2a^2)
Xét : 0 = (a+b+c)^2 = a^2+b^2+c^2+2.(ab+bc+ca)
Mà a^2+b^2+c^2 = 14
<=> 2.(ab+bc+ca) = -14
<=> ab+bc+ca = -7
<=> a^2b^2+b^2c^2+c^2a^2+2abc.(a+b+c) = 49
Lại có : a+b+c = 0
<=> a^2b^2+b^2c^2+c^2a^2 = 49
<=> A = a^4+b^4+c^4 = 196 - 2.49 = 98
Tk mk nha
b) \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\Leftrightarrow\)\(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)
\(\Leftrightarrow\)\(x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)
\(\Leftrightarrow\)\(x^2=y^2=z^2=0\)
\(\Leftrightarrow\)\(x=y=z=0\)
Vậy \(D=0\)
\(\left(a+b\right)^2\)
\(=\left(a+b\right)\left(a+b\right)\)
\(=a^2+ab+ba+b^2\)
\(=a^2+2ab+b^2\)
\(\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a-b\right)\)
\(=a^2-ab-ba+b^2\)
\(=a^2-2ab+b^2\)
Ta có:
a + b + c = 0
\(\Rightarrow\) a = -b - c
\(\Rightarrow\) a2 = (-b - c)2
\(\Rightarrow\) a2 = b2 + 2bc + c2
\(\Rightarrow\) a2 - b2 - c2 = 2bc
\(\Rightarrow\) (a2 - b2 - c2)2 = (2bc)2
\(\Rightarrow\) a4 + b4 + c4 - 2a2b2 - 2a2c2 + 2b2c2 = 2b2c2
\(\Rightarrow\) a4 + b4 + c4 = 2a2b2 + 2a2c2 + 2b2c2
\(\Rightarrow\) 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2b2 + 2a2c2 + 2b2c2
\(\Rightarrow\) 2(a4 + b4 + c4) = (a2 + b2 + c2)2
\(\Rightarrow\) 2(a4 + b4 + c4) = 142
= 144
\(\Rightarrow\) a4 + b4 + c4 = 144/2 = 72
a) 79.28.9 + 21.28.9
= 28.9(79 + 21)
= 28.9.100
= 252.100 = 25200
b) 162 + 4.8.34 + 342
= 162 + 2.2.8.34 + 342
= 162 + 2.16.34 + 342
= (16 + 34)2
= 502 = 2500
c) 410.510 - (205 - 2)(205 + 2)
= 410.510 - 2010 + 4
= 410.510 - (4.5)10 + 4
= 410.510 - 410.510 + 4
= 4
A) (a-b-c)^2=a^2-b^2-c^2-2ab+2bc-2bc
B) (a-b)^3=a^3-3a^2b+3ab^2-b^3
\(a^2+b^2+c^2-2ab-2bc-2ac\)
\(a^3-3a^2b+3ab^2-b^3\)