Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
(d) vuông góc với (d') : y = 2x
=> (d) có dạng : y = -2x + b
(d) đi qua M (3,5) :
5 = (-2) . 3 + b
=> b = 10
(d) : y = -2x + 10
Gọi (d): y = ax + b là đường thẳng cần viết
a) Do (d) song song với đường thẳng y = 3x/2 nên a = 3/2
⇒ (d): y = 3x/2 + b
Do (d) đi qua A(1/2; 7/4) nên:
3/2 . 1/2 + b = 7/4
⇔ 3/4 + b = 7/4
⇔ b = 7/4 - 1/4
⇔ b = 1
Vậy (d): y = 3x/2 + 1
b) Do (d) cắt trục tung tại điểm có tung độ là 3 nên b = 3
⇒ (d): y = ax + 3
Do (d) đi qua điểm B(2; 1) nên:
a.2 + 3 = 1
⇔ 2a = 1 - 3
⇔ 2a = -2
⇔ a = -2 : 2
⇔ a = -1
Vậy (d): y = -x + 3
c) Do (d) có hệ số góc là 3 nên a = 3
⇒ (d): y = 3x + b
Do (d) đi qua P(1/2; 5/2) nên:
3.1/2 + b = 5/2
⇔ 3/2 + b = 5/2
⇔ b = 5/2 - 3/2
⇔ b = 1
Vậy (d): y = 3x + 1
d: Gọi (d): y=ax+b(\(a\ne0\))
(d) có tung độ gốc là -2,5 nên (d) cắt trục tung tại điểm có tung độ là -2,5
Thay x=0 và y=-2,5 vào (d), ta được:
\(a\cdot0+b=-2,5\)
=>b=-2,5
=>y=ax-2,5
Thay x=1,5 và y=3,5 vào y=ax-2,5; ta được:
\(a\cdot1,5-2,5=3,5\)
=>\(a\cdot1,5=6\)
=>a=4
Vậy: (d): y=4x-2,5
e: Thay x=1 và y=2 vào (d), ta được:
\(a\cdot1+b=2\)
=>a+b=2(1)
Thay x=3 và y=6 vào (d), ta được:
\(a\cdot3+b=6\)
=>3a+b=6(2)
Từ (1) và (2), ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=2\\3a+b=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3a+3b=6\\3a+b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=0\\a+b=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=0\\a=2-b=2-0=2\end{matrix}\right.\)
Vậy: (d): y=2x
a: Vì (d) đi qua A(1;2) và B(4;5) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=2\\4a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-3\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Vì (d): y=ax+b đi qua M(-2/3;-7) và N(2;1) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}-\dfrac{2}{3}a+b=-7\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-5\end{matrix}\right.\)
\(\overrightarrow{MN}\)=(8/3;8)=8/3.(1;3).
Phương trình đường thẳng cần tìm đi qua N(2;1) và nhận vectơ \(\overrightarrow{n}\)=(3;-1) làm một vectơ pháp tuyến.
MN: 3(x-2)-1(y-1)=0 \(\Leftrightarrow\) 3x-y-5=0.