K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2015

\(\left(1+\frac{1}{11}\right)\cdot\left(1+\frac{1}{10}\right)\cdot\left(1+\frac{1}{9}\right)\cdot.........................................\left(1+\frac{1}{2}\right)\)

\(=\frac{12}{11}.\frac{11}{10}.\frac{10}{9}....\frac{3}{2}\)

\(=\frac{12.11.10....3}{11.10.9....2}\)

\(=\frac{12}{2}=6\)

 

24 tháng 12 2015

\(\frac{12}{11}.\frac{11}{10}.....\frac{3}{2}=\frac{12}{2}=6\)

24 tháng 7 2018

= (1/2).(2/3).(4/5).(5/6)......(2016/2017).(2017/2018)

=1.2.3.4.5......2016.2017/2.3.4.5.....2017.2018

=1/2018

24 tháng 7 2018

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\cdot\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)

\(=\frac{1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot2016\cdot2017}{2\cdot3\cdot4\cdot\cdot\cdot\cdot2017\cdot2018}\)

\(=\frac{1}{2018}\)

26 tháng 6 2016

\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)

\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)

\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)

Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:

\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)

\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)

16 tháng 8 2017

5.(1/5+1/17)-(2/5+2/17+9/15+12/68)

=5.22/85-22/17

=22/17-22/17

=0

16 tháng 8 2017

Ta có : \(5\cdot\left(\frac{1}{5}+\frac{1}{17}\right)-\left(\frac{2}{5}+\frac{2}{17}+\frac{9}{15}+\frac{12}{68}\right)\)

\(=\) \(5\cdot\frac{1}{5}+5\cdot\frac{1}{17}-\left(\frac{2}{5}+\frac{2}{17}+\frac{3}{5}+\frac{3}{17}\right)\)

\(=\) \(1+\frac{5}{17}-\left[\left(\frac{2}{5}+\frac{3}{5}\right)+\left(\frac{2}{17}+\frac{3}{17}\right)\right]\)

\(=\) \(1+\frac{5}{17}-\left(1+\frac{5}{17}\right)\)

\(=\) \(1+\frac{5}{17}-1-\frac{5}{17}\)

\(=\)\(0\)

     Vậy ... 

                  Tk ủng hộ mk nha các bn ❣❣ C.ơn nhiều ^^

8 tháng 3 2019

Mk ko biết lm nhưng cứ k thoải mái nha

SORRY

17 tháng 4 2019

G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)                         

=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)

=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)

=> G = \(\frac{2.50}{1.51}\)

=> G = \(\frac{100}{51}\)

17 tháng 4 2019

公关稿黄继线长旧款您