Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Công thức: Biến đổi x theo y và ngc lại và dùng các quy tắc.
a)\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\left(1\right)\end{matrix}\right.\)
Cộng 2 pt ta đc: x=1
Thay vào (1):\(\Leftrightarrow y=\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}\)
Vậy (x;y)\(=\left(1;\frac{\sqrt{6}}{3}\right)\)
Những câu sau làm ttự.
#Walker
ủa nhưng khi thay x,y vào phương trình đầu tiên thì kết quả không bằng 1 ?
a, Với y >= 0
hpt có dạng \(\left\{{}\begin{matrix}2x+y=3\\x-y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=9\\y=x-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)(ktmđk)
Với y < 0 hpt có dạng
\(\left\{{}\begin{matrix}2x-y=3\\x-y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-3-6=-9\end{matrix}\right.\)(tm)
b, bạn tự làm
c, đk : x>= 3
\(\left\{{}\begin{matrix}2\sqrt{x+3}+\left|y-2\right|=2\\\sqrt{x+3}-3\left|y-2\right|=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x+3}+\left|y-2\right|=2\\2\sqrt{x+3}-6\left|y-2\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7\left|y-2\right|=1\\2\sqrt{x+3}+\left|y-2\right|=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y-2=\dfrac{1}{7}\\y-2=-\dfrac{1}{7}\end{matrix}\right.\\2\sqrt{x+3}+\left|y-2\right|=2\end{matrix}\right.\)
bạn tự giải nốt nhé
1) Ta có: \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}-3\sqrt{y}=15\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11\sqrt{x}=33\\3\sqrt{x}-\sqrt{y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)
2) Ta có: \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{x+3}+4\sqrt{y+1}=-4\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y+1}=0\\\sqrt{x+3}-2\sqrt{y+1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=0\\\sqrt{x+3}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\x+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
4. Đk: \(x,y\ge0\)
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}=1\\\sqrt{y}+\sqrt{x+1}=1\end{matrix}\right.\left(1\right)\)
Ta có: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}\ge0+1=1\\\sqrt{y}+\sqrt{x+1}\ge0+1=1\end{matrix}\right.\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=0,\sqrt{x+1}=1\\\sqrt{y}=0,\sqrt{y+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)<tmđk>
Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(0;0\right)\)
1/ \(\left\{{}\begin{matrix}x\sqrt{2}-y\sqrt{3}=1\\x+y\sqrt{3}=\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(\sqrt{2}+1\right)=1+\sqrt{2}\\x+y\sqrt{3}=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{\sqrt{2}-1}{\sqrt{3}}\end{matrix}\right.\)
vậy hệ phương trình có ngiệm (x;y)=(1;\(\frac{\sqrt{2}-1}{\sqrt{3}}\))
2/ \(\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\x+\left(\sqrt{2}+1\right)y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=-1\\x+\left(\sqrt{2}+1\right)y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{-1}{2}\\x=\frac{3+\sqrt{2}}{2}\end{matrix}\right.\)
vậy hệ phương trình có nghiệm (x;y)=\(\left(\frac{3+\sqrt{2}}{2};\frac{-1}{2}\right)\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\4x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+4y=4\\4x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
1: \(\left\{{}\begin{matrix}x\sqrt{2}-3y=1\\2x+y\sqrt{2}=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-3\sqrt{2}\cdot y=\sqrt{2}\\2x+y\sqrt{2}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4\sqrt{2}\cdot y=\sqrt{2}+2\\2x+y\sqrt{2}=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{2+\sqrt{2}}{-4\sqrt{2}}=\dfrac{-\sqrt{2}-1}{4}\\2x=-2-y\sqrt{2}=-2+\sqrt{2}\cdot\dfrac{\sqrt{2}+1}{4}=\dfrac{-6+\sqrt{2}}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{-\sqrt{2}-1}{4}\\x=\dfrac{-6+\sqrt{2}}{8}\end{matrix}\right.\)
2: \(\left\{{}\begin{matrix}5x\sqrt{3}+y=2\sqrt{2}\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x\sqrt{6}+y\sqrt{2}=4\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x\cdot\sqrt{6}=6\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{\sqrt{6}}=\dfrac{\sqrt{6}}{6}\\y\sqrt{2}=x\sqrt{6}-2=1-2=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{\sqrt{6}}{6}\\y=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
ĐK: \(x,y\ge0\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x}-2\sqrt{y}=-2\left(1\right)\\4\sqrt{x}+2\sqrt{y}=2\end{matrix}\right.\)
Cộng vế theo vế 2 phương trình ta được: \(7\sqrt{x}=0\Leftrightarrow x=0\)
Khi đó \(\left(1\right)\Leftrightarrow-2\sqrt{y}=-2\Leftrightarrow y=1\)
Vậy hệ đã cho có nghiệm \(\left(x;y\right)=\left(0;1\right)\)
ĐKXĐ: \(x\ge0;y\ge0\)
\(\left\{{}\begin{matrix}3\sqrt{x}-2\sqrt{y}=-2\\2\sqrt{x}+\sqrt{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x}-2\sqrt{y}=-2\\4\sqrt{x}+2\sqrt{y}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x}=0\\2\sqrt{x}+\sqrt{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2\sqrt{0}+\sqrt{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\0+\sqrt{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) (TM)
Vậy...