Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(3\dfrac{1}{3}+2,5\right):\left(3\dfrac{1}{6}-4\dfrac{1}{5}\right)-\dfrac{11}{31}\\ =\left(\dfrac{10}{3}+\dfrac{5}{2}\right):\left(\dfrac{19}{6}-\dfrac{21}{5}\right)-\dfrac{31}{11}\\ =\left(\dfrac{30}{6}+\dfrac{15}{6}\right):\left(\dfrac{95}{30}-\dfrac{126}{30}\right)-\dfrac{31}{11}\\ =\dfrac{45}{6}:\dfrac{-21}{30}-\dfrac{31}{11}\\ =\dfrac{15}{2}\times\dfrac{-10}{7}-\dfrac{31}{11}=-\dfrac{75}{7}-\dfrac{31}{11}=-\dfrac{825}{77}-\dfrac{217}{77}=\dfrac{-1042}{77}\)
\(B=\left(-6\right).10:\left[-0,25+\dfrac{1}{2}:\left(-2\right)\right]+1\dfrac{3}{4}\\ =-60:\left(\dfrac{-1}{4}+\dfrac{1}{2}.\dfrac{-1}{2}\right)+1\dfrac{3}{4}\\ =-60:\left(\dfrac{-1}{4}+\dfrac{-1}{4}\right)+1\dfrac{3}{4}\\ =-60:\left(\dfrac{-1}{2}\right)+1\dfrac{3}{4}=120+1\dfrac{3}{4}=121\dfrac{3}{4}\)
\(A=\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{\frac{42}{31}\cdot\frac{31}{7}-\left(15-\frac{19}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-\frac{16}{3}\right)}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\left(15-\frac{2}{3}\right)}{\frac{29}{6}+\frac{10}{9}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\frac{43}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{-\frac{25}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\frac{50}{31}\cdot\frac{31}{50}=1\)
a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)
=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)
=> \(\left|2-\frac{3}{2}x\right|=x+6\)
ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)
Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)
=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)
=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)
b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)
=> x = 1/4
hoặc x = 0 hoặc x = 1/2
\(\left(\frac{1}{3}\right)^{30}.x+\left(\frac{1}{3}\right)^{31}=\left(\frac{1}{3}\right)^{32}\)
\(\left(\frac{1}{3}\right)^{30}.\left(x+\frac{1}{3}\right)=\left(\frac{1}{3}\right)^{32}\)
\(x+\frac{1}{3}=\left(\frac{1}{3}\right)^{32}:\left(\frac{1}{3}\right)^{30}\)
\(x+\frac{1}{3}=\left(\frac{1}{3}\right)^2\)
\(x+\frac{1}{3}=\frac{1}{9}\)
\(x=\frac{1}{9}-\frac{1}{3}=\frac{1}{9}-\frac{3}{9}\)
\(x=-\frac{2}{9}\)