Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=\frac{a-b}{2017-2018}=\frac{b-c}{2018-2019}=\frac{a-c}{2017-2019}.\)
\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{a-c}{-2}\)
\(\Rightarrow\frac{a-b}{-1}.\frac{b-c}{-1}=\left(\frac{a-c}{-2}\right)^2\)
\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(a-c\right)^2}{\left(-2\right)^2}\)
\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(a-c\right)^2}{4}.\)
\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(a-c\right)^2.1\)
\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(a-c\right)^2\left(đpcm\right).\)
Chúc bạn học tốt!
\(|2017-x|+|2018-x|+|2019-x|=2\left(1\right)\)
Ta có: \(2017-x=0\Leftrightarrow x=2017\)
\(2018-x=0\Leftrightarrow x=2018\)
\(2019-x=0\Leftrightarrow x=2019\)
Lập bảng xét dấu :
+) Với \(x\le2017\Rightarrow\hept{\begin{cases}2017-x\ge0\\2018-x>0\\2019-x>0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=2017-x\\|2018-x|=2018-x\\|2019-x|=2019-x\end{cases}\left(2\right)}}\)
Thay (2) vào(1) ta được :
\(2017-x+2018-x+2019-x=2\)
\(6054-3x=2\)
\(3x=6052\)
\(x=\frac{6052}{3}>2017\)( loại )
+) Với \(2017< x\le2018\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x>0\\2019-x>0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=2018-x\\|2019-x|=2019-x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(x-2017+2018-x+2019-x=2\)
\(2020-x=2\)
\(x=2018\)( chọn )
+) Với \(2018< x\le2019\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x< 0\\2019-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=x-2018\\|2019-x|=2019-x\end{cases}\left(4\right)}}\)
Thay (4) vào (1) ta được :
\(x-2017+x-2018+2019-x=2\)
\(x-2016=2\)
\(x=2018\)( loại )
+) Với \(x>2019\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x< 0\\2019-x< 0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=x-2018\\|2019-x|=x-2019\end{cases}\left(5\right)}}\)
Thay (5) vào (1) ta được :
\(x-2017+x-2018+x-2019=2\)
\(3x-6054=2\)
\(3x=6056\)
\(x=\frac{6056}{3}< 2019\)( loại )
Vậy x=2018
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
\(\left(\frac{19}{2018}-2019\right).\frac{1}{2019}-\left(\frac{1}{2018}-2019\right).\frac{19}{2019}\)
\(=\frac{19}{2018}-2019.\frac{1}{2019}-\frac{-1}{2018}+2019.\frac{19}{2019}\)
\(=\left(\frac{19}{2018}-\frac{-1}{2018}\right)-\left(2019+2019\right).\left(\frac{1}{2019}.\frac{19}{2019}\right)\)
\(=\frac{18}{2018}-2038.\frac{19}{2019}\)
còn đâu tự tính nha
Ta có:
\(VT=\left|x-2017\right|+\left|2019-x\right|+\left|2018-x\right|\)
\(\Rightarrow VT\ge\left|x-2017+2019-x\right|+\left|2018-x\right|\)
\(\Rightarrow VT\ge2+\left|2018-x\right|\ge2\)
Dấu "=" xảy ra khi và chỉ khi \(x=2018\Rightarrow\) pt có nghiệm duy nhất \(x=2018\)
B1:
\(A=\left(x+2020\right)^4+\left|y-2019\right|-2018\)
+Có: \(\left(x+2020\right)^4\ge0với\forall x\\\left|y-2019\right|\ge0với\forall y\\\Rightarrow \left(x+2020\right)^4+\left|y-2019\right|-2018\ge-2018\\ \Leftrightarrow A\ge-2018 \)
+Dấu "=" xảy ra khi
\(\left(x+2020\right)^4=0\\ \Leftrightarrow x=-2020\)
\(\left|y-2019\right|=0\\ \Leftrightarrow y=2019\)
+Vậy \(A_{min}=-2018\) khi \(x=-2020,y=2019\)
\(\left(\left|x\right|-2017\right)^{\left(n+2018\right)\left(n+2019\right)}=-\left(2^3-3^2\right)^{2019}\)
\(\left(\left|x\right|-2017\right)^{\left(n+2018\right)\left(n+2019\right)}=-\left(-1\right)^{2019}=1\)
\(\Rightarrow\orbr{\begin{cases}\left(n+2018\right)\left(n+2019\right)=0\\\left|x\right|-2017=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\orbr{\begin{cases}n=-2018\\n=-2019\end{cases}}\\\orbr{\begin{cases}x=2018\\x=-2018\end{cases}}\end{cases}}\)