Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3+3^2+.....+3^{99}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(=39+3^3\left(3+3^2+3^3\right)+........+3^{96}\left(3+3^2+3^3\right)\)
\(=39+3^3\cdot39+...+3^{96}\cdot39\)
\(=39\left(1+3^3+....+3^{96}\right)\)
Vì \(39⋮13\Rightarrow39\in B\left(13\right)\)
Bài 3:
a) Để A là số nguyên thì \(7⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{3;1;9;-5\right\}\)
bài 3:
tổng số giờ đã chảy đc từ 2 vòi : 1+1=2(giờ)
tổng số phần bể đã chảy được từ 2 vòi : \(\dfrac{1}{5}+\dfrac{1}{7}=\dfrac{7}{35}+\dfrac{5}{35}=\dfrac{12}{35}\left(ph\text{ần} b\text{ể}\right)\)
nếu chảy cùng lúc mỗi giờ chảy được : \(\dfrac{12}{35}:2=\dfrac{12}{35\cdot2}=\dfrac{6}{35}\left(ph\text{ần}b\text{ể}\right)\)
bài 4:
cách 1:
độ dài đoạn AB là : \(\dfrac{3}{4}+\dfrac{9}{8}=\dfrac{18}{24}+\dfrac{27}{24}=\dfrac{45}{24}\left(m\right)\)
diện tích ABCD là : \(\dfrac{45}{27}\cdot\dfrac{4}{7}=\dfrac{15}{14}\left(m^2\right)\)
cách 2:
diện tích AEFD là : \(\dfrac{3}{4}\cdot\dfrac{4}{7}=\dfrac{3}{7}\left(m^2\right)\)
diện tích EBCF là : \(\dfrac{9}{8}\cdot\dfrac{4}{7}=\dfrac{9}{14}\left(m^2\right)\)
diện tích ABCD là : \(\dfrac{3}{7}+\dfrac{9}{14}=\dfrac{15}{14}\left(m^2\right)\)
a, Xét : \(\frac{x}{-30}=-\frac{12}{20}=-\frac{3}{5}\Leftrightarrow5x=90\Leftrightarrow x=18\)
Xét : \(\frac{-36}{y}=\frac{-3}{5}\Leftrightarrow3y=180\Leftrightarrow y=60\)
Vậy \(x=18;y=60\)
b, \(\frac{x-1}{7}=\frac{2y+5}{3}\)và \(x+2y=-16\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{7}=\frac{2y+5}{3}=\frac{x+2y-1+5}{7+3}=\frac{-16+4}{10}=\frac{-12}{10}=-\frac{6}{5}\)
\(\Leftrightarrow\frac{x-1}{7}=-\frac{6}{5}\Leftrightarrow5x-5=-42\Leftrightarrow5x=-37\Leftrightarrow x=-\frac{37}{5}\)
\(\Leftrightarrow\frac{2y+5}{3}=-\frac{6}{5}\Leftrightarrow10y+25=-18\Leftrightarrow10y=-43\Leftrightarrow y=-\frac{43}{10}\)
Từ đề bài, ta suy ra:
\(\frac{2020\left(1+2021\right)}{2019\left(2019+3\right)}=\frac{2020\cdot2022}{2019\cdot2022}=\frac{2020}{2019}\)
\(\frac{2020+2020.2021}{2019^2+2019.3}=\frac{2020.\left(1+2021\right)}{2019.\left(2019+3\right)}=\frac{2020.2022}{2019.2022}=\frac{2020}{2019}=1\frac{1}{2019}\)
Chúc bn học tốt
chiu
ối giồi ôi đang học zoom mà còn đăng bài dc