Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(xz+yz-5\left(x+y\right)\)
\(=z\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(z-5\right)\)
b.\(3x^2-3xy-5x+5y\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
c.\(x^2+6x-y^2-3z^2\)???Sai đề bài ...?
d.\(3x^2+6xy+3y^2-3z^2\)
\(=3\left(x^2+2xy+y^2-z^2\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]\)'
\(=3\left(x+y-z\right)\left(x+y+z\right)\)
Trả lời:
a, xz + yz - 5 ( x + y )
= ( xz + yz ) - 5 ( x + y )
= z ( x + y ) - 5 ( x + y )
= ( x + y ) ( z - 5 )
b, 3x2 - 3xy - 5x + 5y
= ( 3x2 - 3xy ) - ( 5x - 5y )
= 3x ( x - y ) - 5 ( x - y )
= ( x - y ) ( 3x - 5 )
c, x2 + 6x - y2 - 3z2
= - ( 3x2 - x2 + y2 - 6x )
d, 3x2 + 6xy + 3y2 - 3z2
= 3 ( x2 + 2xy + y2 - x2 )
= 3 [ ( x2 + 2xy + y2 ) - z2 ]
= 3 [ ( x + y )2 - z2 ]
= 3 ( x + y - z ) ( x + y + z )
a: \(=\left(x+2-y\right)\left(x+2+y\right)\)
c: \(=\left(x-y\right)^2\)
a) 5x2 - 5xy + 7y - 7x = ( 5x2 - 5xy ) - ( 7x - 7y ) = 5x( x - y ) - 7( x - y ) = ( x - y )( 5x - 7 )
b) x2 - y2 + 2x + 1 = ( x2 + 2x + 1 ) - y2 = ( x + 1 )2 - y2 = ( x - y + 1 )( x + y + 1 )
c) 3x2 + 6xy + 3y2 - 3z2 = 3( x2 + 2xy + y2 - z2 ) = 3[ ( x2 + 2xy + y2 ) - z2 ] = 3[ ( x + y )2 - z2 ] = 3( x + y - z )( x + y + z )
d) ab( x2 + y2 ) + xy( a2 + b2 ) = abx2 + aby2 + a2xy + b2xy
= ( a2xy + abx2 ) + ( aby2 + b2xy )
= ax( ay + bx ) + by( ay + bx )
= ( ay + bx )( ax + by )
a) Ta có: \(3x^2+5y-3xy-5x\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
b) Ta có: \(3y^2-3z^2+3x^2+6xy\)
\(=3\left(y^2-z^2+x^2+2xy\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]\)
\(=3\left(x+y-z\right)\left(x+y+z\right)\)
c) Ta có: \(x^2-25-2xy+y^2\)
\(=\left(x-y\right)^2-5^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
d) Ta có: \(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
e) Ta có: \(x^2-5x+5y-y^2\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f) Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
A = xy + y - 2x - 2
= y( x + 1 ) - 2( x + 1 )
= ( x + 1 )( y - 2 )
B = x2 - 3x + xy - 3y
= x( x - 3 ) + y( x - 3 )
= ( x - 3 )( x + y )
C = 3x2 - 3xy - 5x + 5y
= 3x( x - y ) - 5( x - y )
= ( x - y )( 3x - 5 )
D = xy + 1 + x + y
= y( x + 1 ) + ( x + 1 )
= ( x + 1 )( y + 1 )
E = ax - bx + ab - x2
= ( ax - x2 ) + ( ab - bx )
= x( a - x ) + b( a - x )
= ( a - x )( x + b )
F = x2 + ab + ax + bx
= ( ax + x2 ) + ( ab + bx )
= x( a + x ) + b( a + x )
= ( a + x )( x + b )
G = a3 - a2x - ay + xy
= a2( a - x ) - y( a - x )
= ( a - x )( a2 - y )
Bonus : = ( a - x )[ a2 - ( √y )2 ]
= ( a - x )( a - √y )( a + √y )
H = 2xy + 3z + 6y + xz
= ( 6y + 2xy ) + ( 3z + xz )
= 2y( 3 + x ) + z( 3 + x )
= ( 3 + x )( 2y + z )
A = xy + y - 2x - 2 = y(x + 1) - 2(x + 1) = (y - 2)(x + !1
B = x2 - 3x + xy - 3y = x(x - 3) + y(x - 3) = (x + y)(x - 3)
C = 3x2 - 3xy - 5x + 5y = 3x(x - y) - 5(x - y) = (3x - 5)(x - y)
D = xy + 1 + x + y = xy + x + y + 1 = x(y + 1) + (y + 1) = (x + 1)(y + 1)
E = ax - bx + ab - x2 = ax - x2 + ab - bx = a(a - x) - b(a - x) = (a - b)(a - x)
F = x2 + ab + ax + bx = ab + ax + bx + x2 = a(b + x) + x(b + x) = (a + x)(b + x)
G = a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)
H = 2xy + 3z + 6y + xz = 2xy + 6y + 3z + xz = 2y(x + 3) + z(x + 3) = (2y + z)(x + 3)
a) =(x-y)*(x+y)-(5*(x+y))
=(x+y)*(x-y-5)
Mấy bài còn lại cũng tương tự nha bạn = cách đặt nhân tử chung
bai nao khong hieu thi pan nhan tin vào nick minh minh se giai đùm ban
a) (x2 - y2) - 5(x + y)
= (x - y)(x + y) - 5 (x + y)
= (x + y) (x - y -5)
b) 5x3 - 5x2y - 10x2 + 10 xy
= 5[(x3 - x2y) - (2x2 - 2 xy)]
=5[x2(x - y) - 2x(x - y)]
=5x(x-y)(x - 2)
c) 2x2 - 5x = x(2x - 5)
d) x3 - 3x2 +1 - 3x
= (x3 + 1) - (3x2 + 3x)
= (x + 1)(x2 - x + 1) - 3x(x + 1)
= (x + 1) [x2 - x + 1 - 3x]
= (x + 1)[x2 - 4x + 1]
= (x + 1)[x2 - 2.x.2 + 22 - 22 + 1]
= (x + 1)[(x - 2)2 - 3]
= \(\left(x+1\right)\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)\)
e) 3x2 - 6xy + 3y2 - 12z2
= 3[ x2 - 2xy + y2 - 4z2]
= 3[ (x - y)2 - (2z)2]
= 3(x - y + 2z)(x - y - 2z)
f) 3x2 - 7x - 10
= 3x2 - 7x - 7 - 3
= (3x2 -3) - (7x + 7)
= 3(x2 - 1) - 7(x + 1)
= 3 (x + 1)(x - 1) - 7(x + 1)
= (x + 1)[3(x - 1) - 7]
= (x +1)(3x - 8)
g) x4 + 1 - 2x2 = (x2)2 - 2.x2 + 1 = (x2 - 1)2
= (x + 1)2(x - 1)2
h) 3x2 - 3y2 - 12x + 12y
= 3(x2 - y2) - 12(x - y)
= 3(x - y)(x + y) - 12(x -y)
= (x - y) [3(x + y) - 12]
= (x - y). 3. (x+y - 4)
j) x2 - 3x + 2 = x2 - x - 2x +2
= x(x - 1) - 2(x -1)
=(x - 1)(x - 2)