Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Ta có:x=4=>x+1=5(1)
Mặt khác:A=x5-5x4+5x3-5x2+5x-1(2)
Thay (1) vào (2) ta có:
A=x5-(x+1)x4+(x+1)x3-(x+1)x2+(x+1)x-1
=>A=x5-x5-x4+x4+x3-x3-x2+x2+x-1
=>A=x-1=4-1=3
2)Vì a:5 dư 2,b:5 dư 3 nên:
Đặt:a=5x+2;b=5y+3
Khi đó:ab=(5x+2)(5y+3)=25xy+10y+15x+6
=5(5xy+2y+3x+1)+1
Vì 5(5xy+2y+3x+1)\(⋮\)5 nên =>5(5xy+2y+3x+1)+1:5 dư 1 hay ab:5 dư 1
Vậy ab:5 dư 1
3)
a)Nhận xét:
a1=1
a2=1+2=3
a3=1+2+3=6
a4=1+2+3+4=10
Khi đó:a100=1+2+3+...+100=\(\dfrac{100.101}{2}\)=5050
an=1+2+3+...+n=\(\dfrac{n\left(n+1\right)}{2}\)
b)Gọi 2 số hạng liên tiếp là n-1;n
=>an-1=1+2+3+...+(n-1)=\(\dfrac{\left(n-1\right)n}{2}\)
=>an=\(\dfrac{\left(n+1\right)n}{2}\)(ở câu a)
Khi đó:tổng 2 số hạng liên tiếp là an+an-1 là:
an+an-1=\(\dfrac{n\left(n+1\right)+n\left(n-1\right)}{2}\)=\(\dfrac{2n.n}{2}\)
=\(\dfrac{2n^2}{2}\)=n2 là số chính phương
Vậy tổng 2 số hạng liên tiếp là số chính phương
Bài 1:
a) A = 210+211+212
=210*(1+21+22)
=210*(1+2+4)
=7*210 chia hết 7
Đpcm
b)7*32=244
=32+64+128
=25+26+27
Ta có: \(A=3\dfrac{1}{117}\cdot\dfrac{1}{119}-\dfrac{4}{117}\cdot5\dfrac{118}{119}-\dfrac{5}{117\cdot119}+\dfrac{8}{39}\)
\(=\dfrac{352}{117}\cdot\dfrac{1}{119}-\dfrac{4}{117}\cdot\dfrac{713}{119}-\dfrac{5}{117\cdot119}+\dfrac{8}{39}\)
\(=\dfrac{352-2852-5}{117\cdot119}+\dfrac{8}{39}\)
\(=\dfrac{-835}{4641}+\dfrac{8}{39}\)
\(=\dfrac{3}{119}\)
Bài 1:
Gọi bốn số liên tiếp cần tìm là a;a+1;a+2;a+3(Điều kiện: a∈N)
Theo đề bài, ta có:
\(a\cdot\left(a+1\right)+146=\left(a+2\right)\left(a+3\right)\)
\(\Leftrightarrow a^2+a+146=a^2+5a+6\)
\(\Leftrightarrow a^2+a+146-a^2-5a-6=0\)
\(\Leftrightarrow-4a+140=0\)
\(\Leftrightarrow-4a=-140\)
hay a=35(nhận)
Vậy: Bốn số liên tiếp cần tìm là 35;36;37;38
Bài 2:
Ta có: \(N=3\cdot\frac{1}{117}\cdot\frac{1}{119}-\frac{4}{117}\cdot5\frac{118}{119}-\frac{5}{117\cdot119}+\frac{8}{39}\)
\(=3\cdot\frac{1}{117\cdot119}-2852\cdot\frac{1}{117\cdot119}-5\cdot\frac{1}{117\cdot119}+\frac{8}{39}\)
\(=\frac{-2854}{117\cdot119}+\frac{8}{39}\)
\(=\frac{-2854}{39\cdot357}+\frac{2856}{39\cdot357}=\frac{2}{20943}\)
Bài 2:
a=5k+2
b=5c+3
\(ab=\left(5k+2\right)\left(5c+3\right)\)
\(=25kc+15k+10c+6\)
\(=5\left(5kc+3k+2c+1\right)+1\) chia 5 dư 1(đpcm)