Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-3\right)\)
\(=4m^2-8m+4-8m+12\)
\(=4m^2-16m+16\)
\(=\left(2m-4\right)^2>=0\)
Do đó: Phương trình luôn có nghiệm
b: Để phương trình có hai nghiệm trái dấu thì 2m-3<0
hay m<3/2
c: Để phương trình có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia thì ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1-2x_2=0\\x_1+x_2=2m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x_2=-2m+2\\x_1=2x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-2}{3}\\x_1=\dfrac{4m-4}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=2m-3\)
\(\Leftrightarrow2m-3=\dfrac{2m-2}{3}\cdot\dfrac{4m-4}{3}\)
\(\Leftrightarrow8\left(m-1\right)^2=9\left(2m-3\right)\)
\(\Leftrightarrow8m^2-16m+8-18m+27=0\)
\(\Leftrightarrow8m^2-34m+35=0\)
\(\text{Δ}=\left(-34\right)^2-4\cdot8\cdot35=36>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{34-6}{16}=\dfrac{28}{16}=\dfrac{7}{4}\\m_2=\dfrac{34+6}{16}=\dfrac{40}{16}=\dfrac{5}{2}\end{matrix}\right.\)
Phương trình trên
<=> kx2 + (2 - 4k)x + (3k - 2) = 0
Ta có ∆' = (1 - 2k)2 - (3k - 2)k
= 1 - 4k + 4k2 - 3k2 + 2k
= k2 - 2k + 1 = (k - 1)2 \(\ge0\)
Vậy pt có nghiệm với mọi k
\(k\left(x-1\right)\left(x-3\right)+2\left(x-1\right)=0\)
\(\left(x-1\right)\left[k\left(x-3\right)+2\right]=0\Rightarrow\orbr{\begin{cases}x=1\\k\left(x-3\right)+2=0\end{cases}}\)vậy pt luôn có nghiệm x = 1 với mọi k.
\(f\left(x\right)=\left(1-m^2\right)\left(x+1\right)^3+x^2-x-3\) là hàm đa thức liên tục trên R. Do đó nó liên tục trên \(\left[-2;-1\right]\)
Ta có \(f\left(-1\right)=-1< 0\) và \(f\left(-2\right)=m^2+2>0\) nên \(f\left(-1\right)f\left(-2\right)< 0\) với mọi m.
Do đó, phương trình \(f\left(x\right)=0\) luôn có ít nhất một nghiệm trong khoảng (-2; -1) với mọi m. Nghĩa là, phương trình \(\left(1-m^2\right)\left(x+1\right)^3+x^2-x-3=0\) luôn có nghiệm với mọi m.
Xét pt cho là pt bậc hai một ẩn $x$ ( Với $a=1 \neq 0, b=-2(m-1), c = m-3$ )
Ta có : \(\Delta'=b'^2-ac\)
\(=\left[-\left(m-1\right)\right]^2-\left(m-3\right)\cdot1\)
\(=m^2-2m+1-m+3\)
\(=m^2-3m+4=\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\)
Nên pt cho luôn có hai nghiệm phân biệt \(\forall m\)
a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)
Vậy PT luôn có 2 nghiệm phân biệt.
b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi
\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)
a,\(\Delta=\left[-\left(2m+3\right)\right]^2-4m=4m^2+12m+9-4m=4m^2+8m+9\)\(=\)\(4\left(m^2+2m+\dfrac{9}{4}\right)=4\left(m+1\right)^2+5\ge5>0\)
=>pt luôn có 2 nghiệm phân biệt
b,vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m+3\\x1x2=m\end{matrix}\right.\)
\(T=\left(x1+x2\right)^2-2x1x2=\left(2m+3\right)^2-2m=4m^2+12m+9-2m\)\(=4m^2+10m+9=4\left(m^2+\dfrac{10}{4}m+\dfrac{9}{4}\right)=4\left[\left(m+\dfrac{5}{4}\right)^2+\dfrac{11}{16}\right]\)\(=4\left(m+\dfrac{5}{4}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
dấu"=" xảy ra<=>m=-5/4
a. Với \(m=-5\) pt trở thành:
\(x^2+8x-9=0\)
\(a+b+c=1+8-9=0\) nên pt có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=-9\end{matrix}\right.\)
b. Ta có:
\(\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0;\forall m\)
\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb với mọi m
\(\Delta'=\left(m-2\right)^2+m^2+8m-2=m^2-4m+4+m^2+8m-2=2m^2+4m+2=2\left(m^2+2m+1\right)=2\left(m+1\right)^2\ge0\) với mọi m
==> pt luôn có nghiệm với mọi giá trị của m
1. Với m=5 thì (1) có dạng
\(5x^2-5x-10=0\Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
2. Nếu m=0 thì (1) trở thành
\(-5x-5=0\Leftrightarrow x=-1\)
Nếu m khác 0 , coi (1) là phương trình bậc 2 ẩn x, ta có:
\(\text{Δ}=\left(-5\right)^2-4\cdot m\cdot\left(-m-5\right)=4m^2+20m+25=\left(2m+5\right) ^2\ge0\)
Nên phương trình (1) luôn có nghiệm với mọi m
a. Bạn tự giải
b.
Với \(m=0\) pt có nghiệm \(x=-1\) (thỏa mãn)
Với \(m\ne0\)
\(\Delta=25+4m\left(m+5\right)=4m^2+20m+25=\left(2m+5\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Pt đã cho luôn có nghiệm với mọi m
m( x2 - 4x + 3 ) + 2( x - 1 ) = 0
<=> mx2 - 4mx + 3m + 2x - 2 = 0
<=> mx2 - 2( 2m - 1 )x - 2 = 0
ĐKXĐ : m ≠ 0
Δ = b2 - 4ac = [ -2( 2m - 1 ) ]2 + 8
= 4( 2m - 1 )2 + 8
Dễ thấy Δ ≥ 8 > 0 ∀ m
hay pt luôn có nghiệm với mọi m ≠ 0 ( đpcm )