Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có:
\(\dfrac{a}{\dfrac{1}{\dfrac{1}{2}}}=\dfrac{b}{\dfrac{1}{\dfrac{1}{5}}}=\dfrac{c}{\dfrac{1}{\dfrac{1}{7}}}\) và \(a+b-2c=70\)
Áp dụng tính chất của dãy tỉ số bằng nhay ta có:
\(\dfrac{a}{\dfrac{1}{\dfrac{1}{2}}}=\dfrac{b}{\dfrac{1}{\dfrac{1}{5}}}=\dfrac{c}{\dfrac{1}{\dfrac{1}{7}}}=\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{2c}{2.7}=\dfrac{a+b-2c}{2+5-14}=\dfrac{70}{-7}=-10\)
\(\dfrac{a}{2}=-10\Rightarrow a=\left(-10\right).2=-20\)
\(\dfrac{b}{5}=-10\Rightarrow b=\left(-10\right).5=-50\)
\(\dfrac{c}{7}=-10\Rightarrow c=\left(-10\right).7=-70\)
Vậy \(a=-20;b=-50;c=-70\)
Bài 1 :
a,Có \(AD\) chung , mà \(AB=AC;DB=DC\)
\(\Rightarrow\Delta ABC=\Delta ADC\)
Do đó \(\widehat{ABD}=\widehat{ACD}\)
b,\(AD\) là cạnh chung của 2\(\Delta:\Delta ABD,\Delta ACD\)
\(\Rightarrow AD\) là phân giác của \(\widehat{BAC}\)
Bài 2:
Ta có : \(EF=HG,\widehat{EFO}=\widehat{GHO}\)
Theo TH thứ 2 của 2 tam giác bằng nhau ta có : cạnh - góc - cạnh
\(\Rightarrow OE=OG\)
Bài 3: Có hình ko bn ,mk dựa vào hình lm ko mk lười vẽ hình lắm =(((((((
\(\widehat{B_2}=\widehat{B_4}=60^0\left(đối.đỉnh\right)\\ \widehat{B_2}+\widehat{B_1}=180^0\left(kề.bù\right)\\ \Rightarrow\widehat{B_1}=180^0-60^0=120^0\\ \Rightarrow\widehat{B_3}=\widehat{B_1}=120^0\left(đối.đỉnh\right)\)
Vì a//b nên \(\widehat{B_2}=\widehat{A_4}=60^0;\widehat{B_1}=\widehat{A_3}=120^0\left(so.le.trong\right)\)
Ta có \(\left\{{}\begin{matrix}\widehat{A_2}=\widehat{A_4}=60^0\\\widehat{A_1}=\widehat{A_3}=120^0\end{matrix}\right.\left(đối.đỉnh\right)\)
Bài 1:
Mình có hình cho câu a) thôi nha.
a) Xét 2 \(\Delta\) \(ABD\) và \(ACD\) có:
\(AB=AC\left(gt\right)\)
\(BD=CD\) (vì D là trung điểm của \(BC\))
Cạnh AD chung
=> \(\Delta ABD=\Delta ACD\left(c-c-c\right)\)
=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc tương ứng).
=> \(AD\) là tia phân giác của \(\widehat{BAC}.\)
b) Vì \(\widehat{BAD}=\widehat{CAD}\left(cmt\right)\)
=> \(\widehat{MAD}=\widehat{NAD}.\)
Xét 2 \(\Delta\) \(AMD\) và \(AND\) có:
\(AM=AN\left(gt\right)\)
\(\widehat{MAD}=\widehat{NAD}\left(cmt\right)\)
Cạnh AD chung
=> \(\Delta AMD=\Delta AND\left(c-g-c\right)\)
=> \(\widehat{AMD}=\widehat{AND}\) (2 góc tương ứng).
Mà \(\widehat{AMD}=90^0\left(gt\right)\)
=> \(\widehat{AND}=90^0.\)
=> \(DN\perp AN\)
Hay \(DN\perp AC.\)
Chúc bạn học tốt!