Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{4x^2-3x+8}{x^3-1}$
$\frac{2x}{x^2+x+1}=\frac{2x(x-1)}{(x-1)(x^2+x+1)}=\frac{2x^2-2x}{x^3-1}$
$\frac{6}{1-x}=\frac{-6(x^2+x+1)}{(x-1)(x^2+x+1)}=\frac{-6x^2-6x-6}{x^3-1}$
\(\dfrac{3x}{3x^3-27x}=\dfrac{3x}{3x\left(x^2-9\right)}=\dfrac{1}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+2}{\left(x-3\right)\left(x+3\right)\left(x+2\right)}\\ \dfrac{x+1}{\left(x+2\right)\left(x+3\right)}=\dfrac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x+2\right)}\)
\(a,\dfrac{7x-1}{2x^2+6x}=\dfrac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}=\dfrac{7x^2-22x+3}{2x\left(x-3\right)\left(x+3\right)}\\ \dfrac{5-3x}{x^2-9}=\dfrac{2x\left(5-3x\right)}{2x\left(x-3\right)\left(x+3\right)}=\dfrac{10x-6x^2}{2x\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{x}{x-5}=\dfrac{x^2}{x\left(x-5\right)}\)
\(\dfrac{2x}{x^2-5x}=\dfrac{2x}{x\left(x-5\right)}\)