Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x^3-8}{x+7}\left(\dfrac{3}{x-2}-\dfrac{2}{x^2+2x+4}\right)\\ =\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{x+7}\left(\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\right)\\ =\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{x+7}\left(\dfrac{3x^2+6x+12}{\left(x-2\right)\left(x^2+2x+4\right)}-\dfrac{2x-4}{\left(x-2\right)\left(x^2+2x+4\right)}\right)\)
\(=\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{x+7}.\dfrac{3x^2+6x+12-2x+4}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\dfrac{3x^2+4x+16}{x+7}\)
\(=\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{x+7}\cdot\dfrac{3x^2+6x+12-2x+4}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\dfrac{3x^2+4x+16}{x+7}\)
\(\left(3x-1\right)\left(2x+7\right)-\left(12x^3+8x^2-14x\right):2x\)
\(=6x^2+19x-7-2x\left(6x^2+4x-7\right):2x=6x^2+19x-7-\left(6x^2-4x+7\right)=15x\)
(3x - 1)(2x + 7) - (12x3 + 8x2 - 14x) : 2x
= 6x2 + 21x - 2x - 7 - (6x2 + 4x - 7)
= 6x2 + 21x - 2x - 7 - 6x2 - 4x + 7
= 6x2 - 6x2 + 21x - 2x - 4x - 7 + 7
= 5x
a) \(\frac{x-1}{x+1}-\frac{x+1}{x-1}+\frac{4}{x^2-1}\left(ĐK:x\ne\pm1\right)\)
\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2+4}{\left(x-1\right)\left(x+1\right)}\)
\(\frac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=-\frac{4}{x+1}\)
b) \(\frac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\left(ĐK:x,y\ne0\right)\)
\(=\frac{xy\left(x^2+y^2\right)}{x^4y}\cdot\frac{1}{x^2+y^2}\)
\(=\frac{1}{x^3}\)