Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2+2^2+2^3+...+2^{2019}\)
\(\Rightarrow2A=2^2+2^3+...+2^{2020}\)
\(\Rightarrow2A-A=\left(2^2+...+2^{2020}\right)-\left(2+...+2^{2019}\right)\)
\(\Rightarrow A=2^{2020}-2\)
Ta có: \(A+2=2^{x+10}\)
\(\Leftrightarrow2^{2020}-2+2=2^{x+10}\)
\(\Leftrightarrow2^{2020}=2^{x+10}\)
\(\Leftrightarrow2020=x+10\)
\(\Leftrightarrow x=2010\)
b) Ta có: \(A+2=2^{2020}=\left(2^{1010}\right)^2\)là số chính phương
XÉT:\(A=2+2^2+2^3+...+2^{2019}\)
\(\Leftrightarrow2A=2^2+2^3+...+2^{2019}+2^{2020}\)
\(\Leftrightarrow2A-A=2^{2020}-2\)
\(\Leftrightarrow A=2^{2020}-2\)
\(\Rightarrow A+2=2^{2020}-2+2=2^{2020}\)LÀ SỐ CHÍNH PHƯƠNG
MÀ\(a+2=2^{x+10}\)
\(\Leftrightarrow2^{x+10}=2^{2020}\)
\(\Leftrightarrow x+10=2020\Leftrightarrow x=2010\)
\(5^x=125\)
\(5^x=5^3\)
=> x=3 ( vì cơ số 5>1)
\(3^2.x=81\)
\(9x=81\)
\(x=81:9\)
\(x=9\)
\(A=1+3+....+\left(2n+1\right)=\frac{\left(2n+2\right)\left(n+1\right)}{2}=\left(n+1\right)^2\)
A = 1 + 3 + 5 + 7 + ... + 2n + 1
= \(\left[\left(2n+1-1\right):2+1\right].\left(\frac{2n+1+1}{2}\right)\)
= \(\left(n+1\right).\left(n+1\right)\)
= \(\left(n+1\right)^2\)
=> A là số chính phương (đpcm)
b) \(2+4+6+...+2n\)
= \(\left[\left(2n-2\right):2+1\right].\frac{2n+2}{2}\)
= \(n.\left(n+1\right)\)
= \(n^2+n\)
\(\Rightarrow\)B không là số chính phương
A chia het cho 2 cho 3 Vì 6 và 18 chia het cho 2va 3
A khong chia het cho 9 vi 2.4.6.8.10 khong chia het cho 9
a) \(A=2+2^2+....+2^{2019}\)
\(\Rightarrow2A=2^2+2^3+....+2^{2020}\)
\(\Rightarrow2A-A=2^{2020}-2\)
\(\Rightarrow A=2^{2020}-2\)
b) \(A+2=2^{2020}-2+2=2^{2020}=\left(2^{1010}\right)^2\)là SCP
làm nốt lười